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Abstract

The transition to a hydrogen economy depends on efficient, affordable catalysts for fuel cells.
Platinum—the industry standard for fuel-cell electrodes—is costly and scarce, highlighting the
need for practical alternatives. High-entropy alloys offer vast compositional diversity and tunable
properties that can mitigate these issues, yet their chemical complexity and configurational dis-
order have hindered rational discovery. Here, we introduce a data-driven framework that couples
machine learning with first-principles disorder descriptors—including the entropy forming ability,
disordered enthalpy-entropy descriptor, and electronic-structure similarity metrics to platinum—
to predict alloy synthesizability and catalytic performance. These descriptors are applied for the
first time in the context of fuel-cell catalyst discovery. The workflow rapidly screens more than

20 000 compositions and identifies several platinum-free candidates that are economically viable,
readily scalable, and exhibit promising predicted activity. These results demonstrate that disorder
descriptors are reliably predicted by machine learning models and can be effectively integrated into
materials-discovery pipelines, accelerating innovation across complex compositional spaces.

Hydrogen fuel cells efficiently convert hydrogen and oxygen into electricity and water, providing clean,
reliable power for applications ranging from long-haul transportation to warehouse forklifts and dis-
tributed energy systems. Proton-exchange-membrane (PEM) fuel cells are especially attractive because
of their rapid start-up and high power density [1]. Their widespread adoption, however, is constrained
by the reliance on platinum (Pt) as the benchmark catalyst for the oxygen-reduction reaction (ORR)
and hydrogen-oxidation reaction (HOR) [2—4]. Pt’s high cost and limited supply account for as much as
42% of the total stack cost [5], creating an urgent need for less expensive yet equally effective catalysts.

Alternative catalyst families—transition-metal-nitrogen-carbon composites, perovskite oxides, and
metal-organic frameworks among them [6—8]—have been investigated, but few achieve the combination
of activity, durability, and manufacturability required for commercial fuel cells [9-11]. High-entropy
alloys (HEAs) have recently emerged as a promising platform. Composed of multiple principal elements
in near-equimolar ratios [12—14], HEAs exhibit exceptional chemical stability, vast compositional tunab-
ility, and surface electronic structures that can be tailored for catalytic reactions. Their high configura-
tional disorder stabilizes unconventional combinations of elements [12, 15-17], opening a design space
orders of magnitude larger than that of traditional alloys. The immense design space creates the possib-
ility of discovering alloys that are not only highly active and durable, but also lower in cost and less sus-
ceptible to supply chain constraints, without sacrificing catalytic performance. This opportunity comes
with a formidable challenge: the number of possible HEA compositions is so large that conventional
experimental screening—or even brute-force first-principles calculations—is impractical. Efficient nav-
igation of this space therefore demands data-driven strategies that can connect composition to catalytic
synthesizability and performance with minimal computational cost.

© 2025 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Framework for accelerated discovery of high-entropy fuel-cell catalysts. High-throughput density functional theory
(DFT) calculations are first performed to evaluate the synthesizability and catalytic performance of 427 high-entropy alloy (HEA)
compositions. Machine learning models are then trained on this dataset and subsequently applied to predict these key properties
across a much larger compositional space, comprising approximately 20 000 HEA compositions. The periodic table in the figure
highlights the elements selected for training and screening, with group and period numbers added for clarity. The approach
yields a ranked list of the most promising candidates for further validation.

Recent investigations have widely employed machine learning (ML) to support the design of
HEAs [15, 18-20]. ML studies on HEAs are typically categorized into three areas [21]: (i) phase form-
ation prediction, which accelerates experimental design by estimating the phase stability for a given
composition [22]; (ii) property prediction, where ML models are used to capture specific key prop-
erties such as hardness [22], yield strength, and oxidation resistance [23]; and (iii) ML interatomic
potentials (MLIPs) [24], often combined with high-throughput calculations to address the challenge of
data scarcity.

In parallel, ML is increasingly applied to electrocatalyst design [25]. Descriptor-oriented approaches
make use of structural parameters (e.g. coordination numbers, bond lengths), electronic features (such
as the d-band center and valence electron count), and catalytic descriptors (including adsorption ener-
gies of key intermediates) [26]. These descriptors enable data-driven predictions of catalytic activity and
stability for various reactions—including hydrogen evolution, oxygen evolution, oxygen reduction, car-
bon dioxide reduction, and nitrogen reduction—thereby accelerating the discovery of efficient electrode
materials [27]. Taken together, these studies illustrate the significant impact of ML approaches on advan-
cing the design of HEAs for electrolysis applications. However, comprehensive disorder descriptors based
on validated first-principles approaches—and their systematic integration with ML—remain underex-
plored for HEAs.

Here we introduce a materials-discovery framework that meets this need (figure 1). We couple high-
throughput first-principles calculations with ML to predict the synthesizability and catalytic activity of
HEAs. In addition to identifying specific candidate materials, the framework demonstrates how physics-
informed disorder descriptors can be systematically incorporated into ML pipelines, thereby accelerat-
ing the exploration of complex compositional spaces. Although we focus on fuel-cell catalysts, the same
strategy is applicable to other functional materials—ranging from thermoelectrics to structural alloys [13,
28]—thus providing a general pathway toward faster, data-driven materials innovation.

1. Results

Catalyst synthesizability. To model the properties of HEAs, we adopt a supercells-based statistical
ensemble strategy [29, 30]. As depicted in figure 2(a), a chemically-disordered system is approxim-
ated by a set of symmetrically inequivalent ordered supercells (‘supercell tiles’ [31, 32]), each sampling
a distinct local chemical environment within the full disordered system. The entropy forming ability
(EFA) is a descriptor devised within the supercell-ensemble construction quantifying configurational
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Figure 2. Disorder descriptors for synthesizability. (a) Illustration of the supercell ensemble method using 49 distinct tiles to
represent the disordered high-entropy alloy (HEA). (b) Example calculation of the entropy forming ability (EFA), determined
from the energy distribution of sampled supercell tiles. (c) Distribution of synthesizability descriptors, EFA and the disordered
enthalpy-entropy descriptor (DEED), across the database. (d) Correlation map displaying Pearson correlation coefficients
between synthesizability descriptors and conventional compositional features. In addition to the EFA and DEED, the map shows
the average distance to the convex hull ((AHp)), atomic mass difference (J,,), atomic radius mismatch (8,), and electronegat-
ivity difference (dy ). (e) Scatter plot of the atomic radius mismatch (J,) versus the electronegativity difference (J ), colored by
DEED values, highlighting the relationships between disorder descriptors and conventional compositional features.

disorder. As illustrated in figure 2(b), EFA = o {H; } !, where o {H; } is the standard deviation of the
zero-temperature enthalpies of the supercell tiles [16]. A narrow energy distribution yields a high EFA,
signaling that the composition can more readily stabilize a high-entropy single phase. For high-entropy
metal carbides, a threshold EFA can be defined, below which systems were shown to phase separate [16],
motivating our investigation of EFA as a guiding descriptor for HEAs.

In addition to the EFA, we employ the disordered enthalpy-entropy descriptor [33]: DEED =
+/EFA/{AHy,), which weighs the entropic gain captured by the EFA against the enthalpic cost of
forming a high-entropy system over competing phases—quantified by its distance to the convex hull
((AHpan)) [34]. DEED also helps distinguish single-phase high-entropy compositions from those that
phase separate and was shown to have applicability to a broader set of chemistries than EFA alone,
including metal carbonitrides and metal borides [33]. EFA and DEED both derive from a careful treat-
ment of the thermodynamic density of states [35]. In this framework, the supercells represent ordered
approximants of configurationally excited states. See [33] for details.

Figure 2(c) illustrates the distribution of EFA and DEED values across the database. Notably, the
DEED distribution is more narrow than that of the EFA, demonstrating how the incorporation of
enthalpic contributions creates a more selective pool of viable candidates. To illustrate how DEED com-
pares with other descriptors, figure 2(d) presents a correlation map of key thermodynamic variables and
traditional composition-based descriptors—including atomic mass differences among the elements (d,,),
electronegativity differences (6, ), and atomic radius mismatch (6,) [36, 37]. By construction, DEED
strongly correlates with EFA and the distance to the hull. Beyond these, the traditional composition-
based descriptors display only weak correlations with either EFA or DEED, suggesting limitations on the
predictive power of compositional descriptors in resolving the synthesizability of HEAs. Even so, their
utility should not be overlooked.

To evaluate whether simple combinations of atomic descriptors can explain trends in synthesizabil-
ity, we analyze their pairwise correlations. Figure 2(e) plots 6, vs. §,—two descriptors having roots in
Hume-Rothery theory for solubility [38]—with DEED values depicted by color. A ‘hot region’ can be
distinguished comprising compositions generally exhibiting higher DEED values. A similar but wider
region can be resolved based on EFA values. Clusters of high EFA/DEED are not evident from pair-
wise correlations alone, and suggest opportunities to create analogous Hume-Rothery rules—originally
devised for two-component systems—for HEAs.
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Figure 3. Performance descriptors based on electronic-structure similarity to platinum. (a) Depiction of the ensemble averaging
procedure used to construct the disordered system density of states (DOS) by combining the DOS of individual supercell tiles,
each weighted by its Boltzmann probability and degeneracy. (b) Illustration of the cosine similarity (cos8) descriptor used to
quantify the similarity between the d-band DOS of platinum and candidate HEA compositions. (c) Distribution of cos # scores
across the HEA database, indicating the range of electronic-structure resemblance to Pt. (d) Distribution of Wasserstein distance
(dw) values across the HEA database, offering a complementary view of DOS dissimilarity relative to Pt.

Catalytic performance. Catalytic performance depends on properties spanning several length scales,
including adsorption energies, active site availability, reaction kinetics, and stability/cyclability—making
comprehensive modeling challenging. At the atomic scale, the electronic structure determines critical
bonding behavior, which cannot be too strong (leading to catalyst poisoning) or too weak (resulting

in low reaction rates). Descriptors built on the electronic structure have become essential for rational
catalyst design [39]. For example, the d-band model [40] links the position of the d-band center relat-
ive to the Fermi level with catalytic activity. A d-band center closer to the Fermi level is a key indicator
of lower antibonding-orbital occupation, which enhances the adsorption of oxygenated species (such as
0,, O*, and OH*) during ORR, facilitating critical bond-breaking and bond-forming steps [41-43], and
improves interactions with hydrogen during HOR, promoting efficient electron transfer [44]. The elec-
tronic structure, including the position of the d-band center, can be tuned through composition [45].
While the d-band model captures important adsorption mechanisms, it can oversimplify factors such as
orbital hybridization, local geometry, and the chemical environment that influence catalyst reactivity and
selectivity [46, 47].

Instead, we employ two complementary descriptors to quantify the similarity of the full d-band
density of states (d-DOS) between HEAs and industry-standard Pt. The d-DOS is represented as a one-
dimensional vector across energy, with each element d-DOS; indicating the number of electronic states
between E; and E; + JE. The first descriptor, cosine similarity (cosf), measures the general angle between
two vectors [48], whereas the second descriptor, the Wasserstein distance (d,,), measures the minimal
cost required to transform one DOS distribution into another [49]. The two descriptors capture dif-
ferences in DOS features (peak intensity, alignment, and energy shifts) distinctly, as highlighted by our
subsequent analysis.

Figure 3(a) illustrates the calculation of the d-DOS for disordered HEAs within the supercells frame-
work. Multiple supercell tiles, capturing distinct atomic configurations, contribute individual d-DOS pro-
files, which are then ensemble-averaged—as a function of temperature—to generate the final disorder-
resolved d-DOS. This approach resolves a statistically meaningful representation of the electronic struc-
ture in complex disordered systems [16, 50-52].

Examples of the two similarity descriptors are depicted in figure 3(b). The Cu-Ni-Ti-W-Zn alloy
yields a high cosine similarity score of 0.47 and a low Wasserstein distance of 4.01, indicating good
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alignment in both the shape and energy distribution of its d-orbital DOS with respect to Pt. In contrast,
the Cr—Fe—~Mn-Ti—V system shows a low cosine similarity of 0.09 and a higher Wasserstein distance of
6.16, reflecting significant electronic dissimilarity. These examples highlight the complementary nature
of the two descriptors: cos6 captures directional similarity in DOS shape, while d,, accounts for broader
discrepancies in peak position and intensity. Together, they provide a more comprehensive assessment of
catalytic resemblance to Pt.

The distribution of cosf and d,, scores across the full HEA dataset is shown in figures 3(c)—(d). The
majority of candidates cluster at low cosf values, with a smaller tail skewed toward Pt-like systems—
reflecting the selectivity of the descriptor and inviting a wider search beyond the initial 427 HEA com-
positions. Alternatively, the d,, values display a bimodal distribution with broad peaks, echoing the
near-continuum of electronic-structure characters accessible with HEAs [53, 54]. While cosf emphas-
izes local alignment in DOS features, d,, provides a global comparison sensitive to both amplitude vari-
ations and energy displacement. The use of both descriptors allows for a tiered-filtering scheme. First,
cosf effectively screens highly dissimilar profiles, as evidenced by the concentration of low similarity
scores. Then, d,, offers a finer-grained differentiation among the remaining candidates, exhibited by the
broad symmetric distribution across the dataset. This more uniform distribution is also expected to facil-
itate the training of more accurate ML models by providing a balanced and well-resolved label space.
These similarity-labeled descriptors serve as training labels within the ML framework, providing domain-
informed knowledge that supports model development and screening.

ML modeling. Our objective is to develop ML models with wide applicability domains that enable
efficient screening of the vast HEA space. This is achieved by combining traditional composition-based
features—derived from the properties of individual elements—with new, validated disorder descriptors
such as EFA, DEED, and d-DOS similarity to industry-standard platinum. Together, these inputs help
predict catalyst synthesizability and performance, offering a targeted approach for identifying promising
candidates within the HEA design space. To accomplish this, we employ a well-established and inter-
pretable ML approach—the random forest regressor [56—59]—to demonstrate that information derived
from elemental composition and disorder can reliably predict complex properties in HEAs.

Figure 4 presents the performance of four ML models trained to predict EFA, DEED, d-DOS cosine
similarity (cosf)), and Wasserstein distance (d,,). All models demonstrate strong predictive accuracy, with
r? testing scores exceeding 0.8 and low mean absolute errors (MAE) across the dataset. Furthermore,
five-fold cross-validation yields consistent performance, supporting the generalizability of the models.

The model predicting DEED exhibits the best performance between the synthesizability descriptors.
This can be attributed to DEED’s construction as a convex-hull-based descriptor [34], which emphas-
izes proximity to low-energy competing phases and produces a more regular and compact distribution
of values than EFA. By incorporating phase stability considerations, DEED better captures underlying
thermodynamics and compositional chemistry, and is thus more compatible with the design of our
input features. These statistical characteristics make DEED more amenable to ML than EFA. In contrast,
EFA—which measures the standard deviation of energies across different supercell tiles—is more sensit-
ive to energetic outliers. These outliers introduce large label variances and degrade model performance,
especially in systems with broad energy landscapes.

Figure 4(c) shows that the model predicting cos® similarity achieves high accuracy, with a testing >
exceeding 0.9. This indicates that the model effectively captures the relationship between composition
and electronic structure similarity. However, prediction performance in the low-similarity regime (0.1-
0.3), which dominates the dataset (as shown in figure 3(c)), remains less accurate due to limited vari-
ance in label values. Figure 4(d) presents the model performance for the Wasserstein distance d,. The d,
values exhibit a more uniform distribution compared to other descriptors, which significantly facilitates
model learning. As a result, this model achieves the best performance among all four descriptors, with a
testing 72 of 0.99 and a MAE of 0.06.

Expanded search. We trained ML models to perform high-throughput inference over an expanded
chemical composition space. This process, illustrated in figure 5(a), screened over 20 000 five-metal HEA
compositions. The element pool, summarized in figure 1, includes additional components commonly
used in HEAs [60, 61]: other transition metals, as well as Al and Sn—selected for their size and elec-
tronegativity compatibility with transition metals.

We performed multi-objective optimization, as shown in figure 5(a), to identify HEA compositions
suitable for experimental validation. Criteria included synthesizability, electronic-structure similarity to
Pt, and economic metrics such as cost, recycling rate, abundance, and supply risk. These metrics prior-
itize candidates for real-world applications and scalable production, promoting manufacturability [62].
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Figure 4. Machine learning (ML) model performance and validation. Parity plots comparing ML-predicted and reference values
for four target properties: (a) entropy forming ability (EFA), (b) disordered enthalpy-entropy descriptor (DEED), (c) d-band
density of states cosine similarity (cos @) to platinum, and (d) Wasserstein distance (d). All models exhibit strong predictive
accuracy and consistency across training and validation splits. The quantity MAEcy shown in the legends denotes the average
mean absolute error over five-fold cross-validation [55].

For example, figure 5(b) shows a radar chart visualizing the performance of two representative com-
positions: one selected through ML-based screening (Al-Cr—Cu—Fe-Zn) and another from our original
set of DFT calculations (Cu—Fe—-Ni-Ti—Zn). The chart compares their relative properties, demonstrat-
ing that the ML-discovered alloy matches or exceeds the DFT reference in nearly every category. ML-
predicted DEED and cosf distributions, shown in figures 5(c) and (d), reveal trends consistent with our
initial DFT dataset and, more importantly, that the range of values predicted by ML is within the range
of values provided by our seed calculations. This helps establish that the models are operating within
their applicability domain as expected, given the chemical similarity of the additional components in
our search. Figure 5(e) highlights several materials composed of elements more readily available than
Pt, while figure 5(f) highlights compositions with components significantly lower in cost. Table 1 sum-
marizes the top-performing compositions ranked in the top 25% across all metrics. Among these, 38
originated from ML predictions, while only two came from the original DFT dataset—demonstrating
the model’s utility in navigating vast, unexplored spaces to discover catalysts that outperform Pt across
multiple critical metrics.
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promising catalyst compositions, such as potential anode materials for hydrogen oxidation reactions. (b) Radar chart comparing
leading candidates identified through ML screening, evaluated across key synthesizability, performance, and economic metrics.
(c) Distribution of catalyst synthesizabilities as measured by DEED. (d) Distribution of catalytic performances as measured by
cos@. (e) Distribution of elemental abundance among the candidate compositions, measured in milligrams of element per kilo-
gram of Earth’s crust averaged over all the components of the HEA. (f) Distribution of price among the candidate compositions.

2. Discussion

Computational descriptors. First-principles-based descriptors such as EFA and DEED are derived
entirely from quantum-mechanical calculations, using fundamental physical laws to model electronic
structure and atomic interactions [64, 65]. Because they are independent of experimental input, EFA
and DEED are robust and generalizable across a wide range of material systems—a critical advantage for
data-driven discovery, especially in complex or underexplored compositional spaces. These descriptors
have successfully predicted the formation of over 60 systems and guided the synthesis of nearly 20 new
high-entropy ceramics [16, 33, 58], demonstrating their practical applicability and ability to identify
promising disordered materials outside the set of known compounds.

In contrast, widely used semi-empirical approaches such as calculation of phase diagrams
(CALPHADsS) [66] rely on parameterizing phase Gibbs free energies using thermochemical and phase-
equilibria data, primarily from binary and ternary experimental systems. While CALPHAD excels where
data is abundant, its reliance on experimental databases limits its predictive power in regions with
sparse or incomplete information—a virtual certainty for HEAs due to their immense compositional
diversity. As a result, predictions in the quinary HEA space are largely extrapolative, significantly redu-
cing CALPHAD’s standalone efficacy for exploratory materials discovery.

However, hybrid approaches that incorporate CALPHAD-derived features alongside first-principles
and other key descriptors have proven effective in ML models for predicting formability and stability in
high-entropy systems [58, 59]. This demonstrates that combining insights from both approaches can be
especially valuable for accelerating discovery and design in complex materials spaces.

Applicability domain. The ML models were trained on 427 quinary HEA compositions (over 20 000
DFT calculations), with elemental coverage spanning all groups and periods of the transition-metal
d-block. This chemical diversity ensures representation of key trends relevant for HEA screening. The
trained models were then applied to predict properties for 20000 quinary HEA compositions—a 50-fold
expansion beyond the initial dataset that would require over a million DFT calculations if performed
directly. This substantial expansion warrants a careful evaluation of the models’ applicability domain.
The seed DFT dataset enables interpolation within a chemically meaningful space, i.e. with new com-
positions that are chemically similar to those used during training. ML-predicted property distributions
closely match those obtained from seed dataset, and their value ranges do not exceed those observed in
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Table 1. Top-ranked HEA candidates based on multiple metrics. Cost denotes the estimated material price in USD per kilogram.
Recycling rate represents the proportion of each element that is recovered and reused. Abundance refers to the elemental concentration
in the Earth’s crust (mg/kg). Supply risk is an index (1-10) that combines abundance, production concentration, substitutability,
recycling, and geopolitical factors. All data were obtained from [63]. To generate the ranking, each metric was normalized to [0,1], with
lower-is-better metrics inverted as (1-value), and the normalized scores were averaged. Uncertainty quantifies the prediction
confidence of the trained random forest model, calculated as the standard deviation across individual tree predictions, where larger
values indicate higher uncertainty. For reference, the average prediction uncertainty for compositions containing elements not included
in the training dataset is 0.66, whereas it is only 0.28 for compositions whose elements are all present in the training data.

DEED cost  recycling rate abundance
composition cosf dy (eV/atom)™' (USD/kg) (%) (mg/kg) supply risk source uncertainty
Al-Cr-Cu-Fe-Zn  0.37 4.06 11.62 4.03 50.00 27 766.40 5.06 ML 0.69
Al-Cu-Fe-Sn—-Zn  0.35 4.07 11.79 5.89 50.00 27 746.46 5.16 ML 0.70
Al-Cu-Fe-Ni-Zn  0.35 4.08 11.68 4.93 50.00 27762.80 5.06 ML 0.76
Al-Co—Cu-Fe-Zn 0.36 4.04 11.83 8.71 50.00 27751.00 5.34 ML 0.73
Ag-Al-Cu-Fe-Zn 0.34 4.18 11.69 106.35 50.00 27746.02 5.06 ML 0.81
Al-Cr-Fe-Ni-Zn 0.36 4.15 11.57 5.61 50.00 27771.20 5.44 ML 0.73
Al-Cr-Fe-Mn-Zn 0.36 4.22 11.58 3.20 50.00 27944.40 5.34 ML 0.72
Al-Co-Fe-Ti-Zn  0.35 4.21 11.69 9.73 50.00 28 869.00 5.44 ML 0.75
Ag—Al-Fe-Sn—Zn  0.36 4.08 11.74 108.89 50.00 27734.48 5.54 ML 0.71
Al-Fe-Ni-Sn—Zn 0.36 4.12 11.74 7.47 50.00 27751.26 5.54 ML 0.72
Ag—Al-Fe-Ni-Zn  0.35 4.09 11.60 107.93 50.00 27750.82 5.44 ML 0.75
Ag—Al-Co-Fe-Zn  0.36 4.05 11.79 111.71 50.00 27739.02 5.72 ML 0.74
Al-Co-Fe-Ni-Zn  0.35 4.06 11.92 10.29 50.00 27755.80 5.72 ML 0.71
Al-Co-Fe-Mn-Zn 0.35 4.14 11.60 7.88 50.00 27929.00 5.62 ML 0.69
Al-Co—Cr-Fe-Zn  0.36 4.17 11.85 9.39 50.00 27759.40 5.72 ML 0.72
Al-Co-Fe-Sn—-Zn  0.36 4.14 11.74 11.25 50.00 27739.46 5.82 ML 0.73
Cu-Fe-Ni-Ti-Zn  0.37 3.90 12.09 6.79 50.00 12 432.80 5.06 DFT 0.32
Al-Fe-Mo-Ni-Zn 0.36 4.15 11.57 11.75 46.00 27751.04 5.92 ML 0.67
Al-Cr-Fe-Mo-Zn 0.36 4.25 11.86 10.85 46.00 27754.64 5.92 ML 0.72
Al-Fe-Mo-Sn-Zn 0.36 4.17 11.51 12.71 46.00 27734.70 6.02 ML 0.73
Al-Cu-Ni-Sn—Zn  0.35 4.06 11.96 8.59 50.00 16 503.26 5.36 ML 0.73
Ag-Al-Cu-Sn—Zn  0.35 4.07 11.95 110.01 50.00 16 486.48 5.36 ML 0.73
Al-Cr-Cu-Sn-Zn  0.37 4.14 11.52 7.69 50.00 16 506.86 5.36 ML 0.72
Co—Cu-Fe-Ti-Zn  0.37 3.85 11.98 10.57 50.00 12 421.00 5.34 DFT 0.46
Ag-Al-Cu-Ni-Zn 0.34 4.19 12.01 109.05 50.00 16 502.82 5.26 ML 0.80
Al-Co—Cr-Cu-Zn 0.37 4.06 11.48 10.51 50.00 16511.40 5.54 ML 0.68
Al-Co—Cu-Sn-Zn  0.35 4.07 12.04 12.37 50.00 16 491.46 5.64 ML 0.72
Al-Co—Cu-Ni-Zn 0.34 4.17 12.10 11.41 50.00 16 507.80 5.54 ML 0.79
Ag-Al-Co—Cu-Zn 0.34 4.18 11.98 112.83 50.00 16 491.02 5.54 ML 0.79
Ag-Al-Ni-Sn—Zn  0.35 4.07 11.89 111.59 50.00 16 491.28 5.74 ML 0.72
Al-Co-Sn-Ti-Zn  0.35 4.24 11.63 13.39 50.00 17 609.46 5.74 ML 0.74
Al-Co—Cr-Ni-Zn 036 4.11 11.52 12.09 50.00 16 516.20 5.92 ML 0.73
Al-Co—-Cr-Mn-Zn 0.36 4.20 11.60 9.67 50.00 16 689.40 5.82 ML 0.69
Ag-Al-Co-Sn-Zn  0.35 4.07 11.99 115.37 50.00 16 479.48 6.02 ML 0.72
Al-Co-Ni-Sn—Zn  0.35 4.11 11.94 13.95 50.00 16 496.26 6.02 ML 0.72
Al-Co—Cr-Sn-Zn  0.37 4.17 11.51 13.05 50.00 16 499.86 6.02 ML 0.66
Ag—Cu-Fe-Ti-Zn  0.35 4.48 11.64 108.21 50.00 12 416.02 5.06 ML 0.65
Ag-Al-Co-Ni-Zn 0.34 4.19 11.97 114.41 50.00 16 495.82 5.92 ML 0.78
Al-Cr-Mn-Mo-Zn 0.36 4.34 11.61 11.13 46.00 16 684.64 6.02 ML 0.65
Ag—Fe-Ni-Ti—-Zn 0.34 4.63 11.50 109.79 50.00 12 420.81 5.44 ML 0.61

the reference data, indicating that the model operates within the same chemical domain. High cross-
validation accuracy and consistent descriptor trends across all target properties further support the
robustness of the model in the expanded space.

In applying the model, we also performed uncertainty quantification to assess the confidence of our
predictions. As shown in table 1, predictions for compositions whose constituent elements are all repres-
ented in the training set exhibit lower uncertainties (average 0.28) than those including elements absent
from the training data (average 0.66), where the model relies solely on ML. This increased uncertainty
is expected, as the model must extrapolate beyond its original training domain when making predic-
tions for compositions containing previously untrained elements. While ML enables rapid screening of
candidate alloys, these results highlight the need for additional calculations and validation before recom-
mending compositions with untrained elements for practical use. Importantly, our framework provides
a systematic approach for identifying regions of greatest uncertainty, thereby offering a valuable path for
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closed-loop experimental design; targeted experiments can be guided to reduce uncertainty, continually
refining and improving predictive accuracy for novel alloy compositions.

Of the 40 top candidates identified via multi-objective optimization, 38 originated from the ML-
predicted set, while only two came from the original DFT dataset. Candidate identification is based not
only on ML-predicted values of cos, d,,, and DEED, but also on newly incorporated economic met-
rics. This enables simultaneous optimization across multiple objectives. While the key physicochemical
property values of these candidates remain within the range observed in the training set, the addition of
economic data and the multi-objective framework allow discovery of many compositions with superior
overall catalyst suitability compared to those in the original seed data.

Future perspective. While this work demonstrates the potential of ML models for accurate prediction
and evaluation of HEAs as fuel-cell catalysts, several key challenges remain.

First, ML predictions are typically confined to the distribution of the training data, as seen in
figure 5, where property distributions for expanded compositional spaces mirror those from the seed
dataset. To overcome this limitation and expand the model’s applicability domain, future work should
integrate active learning for targeted data augmentation [67—70]. In active learning, the model iden-
tifies the next most promising or uncertain compositions—those that would most improve model
performance—for validation via new DFT calculations or experiments. This targeted approach priorit-
izes the acquisition of informative data. By iteratively retraining the model with these new samples, its
ability to generalize improves, which in turn enables efficient exploration of complex or under-sampled
regions.

Second, descriptors such as EFA and DEED have already demonstrated effectiveness in other
chemistries, and their performance in metallic HEAs provides an exciting opportunity for further explor-
ation and validation. Ongoing assessment—and, if needed, adaptation—of these or related descriptors,
especially those tailored to the physics of HEA systems, could further improve predictive accuracy and
deepen understanding of underlying mechanisms.

Further advances could also be achieved by incorporating higher-order computational methods to
better capture the complex environments encountered in actual fuel-cell operation. For example, com-
bining explicit solvation models [71, 72] and ab-initio molecular dynamics [68, 73, 74] can provide more
accurate insights into the catalyst’s behavior under realistic electrochemical conditions, including water
and ion interactions at the catalyst/electrolyte interface [75, 76]. In addition, incorporating thermody-
namic and kinetic modeling, such as calculating potential-dependent adsorption energies or simulating
degradation pathways [77, 78], may offer a more complete understanding of catalytic activity, stability,
and degradation mechanisms. These approaches, used in tandem with data-driven models, would enable
more reliable predictions and guide the rational design of HEA catalysts optimized for operation in PEM
fuel cells. Moreover, they would help inform how the proposed candidates meet practical requirements
such as manufacturability, scalability, and industry standards.

A related research direction is phase stability and crystal structure preference—such as body-centered
cubic versus face-centered cubic—evaluated using thermodynamic descriptors across a broad range of
compositions. Although body-centered cubic is among the most prevalent parent structures for HEAs,
many important examples, such as the prototypical CrMnFeCoNi alloy, crystallize in the face-centered
cubic structure [79-81], and other HEAs form hexagonal close-packed or amorphous phases [60, 82,
83]. In this study, we restrict modeling to the body-centered cubic parent structure for consistency and
clarity; however, our approach is directly applicable to other crystal structures. Future work will involve
explicit application of the framework to additional parent structures, as well as benchmarking model
predictions against experimentally confirmed single-phase HEAs to assess descriptor reliability and guide
practical alloy discovery.

Another important direction is the integration of promising HEA catalyst compositions into prac-
tical PEM fuel-cell systems. Real-world implementation requires not only high activity and stability, but
also compatibility with PEM operating environments, including resistance to corrosion, dissolution, and
poisoning under acidic conditions [84, 85]. Future work should combine computational predictions with
experimental testing in relevant device architectures, evaluating both intrinsic catalytic performance and
long-term durability. In addition, understanding the interface between the HEA catalyst and PEM mater-
ials, as well as optimizing how the catalyst is incorporated into the membrane electrode assembly [5, 86],
will be essential for effective translation of novel catalysts into functional fuel-cell devices.

Finally, the adoption of advanced MLIPs [87-92] and generative models [93—97] offers promising
avenues for automated, Al-driven exploration and data generation. These techniques can facilitate the
discovery of new regions within the high-entropy compositional space that remain inaccessible to con-
ventional or brute-force approaches.
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3. Conclusion

This work presents an effective, data-driven framework for rapid discovery of HEA catalysts for hydro-
gen fuel cells by integrating disorder-sensitive descriptors with ML to predict both synthesizability and
catalytic performance. Most notably, we demonstrate that the DEED is a highly learnable metric for syn-
thesizability in complex alloys, enabling accurate prediction from composition and proving more learn-
able than the EFA. In addition, this study introduces two novel DOS-based descriptors—cosine similarity
(cos@) and Wasserstein distance (d,,)—constructed to quantify catalytic activity in HEAs relative to plat-
inum. These descriptors provide new tools for assessing electronic-structure similarity and screening for
platinum-like catalytic performance.

Leveraging these innovations, we performed high-throughput screening of over 20000 HEA com-
positions, identifying several platinum-free candidates that are economically viable, readily scalable,
and exhibit promising predicted catalytic activity. These results demonstrate that disorder-sensitive
descriptors—including both the DEED synthesizability metric and the DOS-based performance
metrics—can be effectively incorporated into automated discovery pipelines, helping to overcome the
configurational complexity of HEAs.

Our framework is broadly applicable to fields including energy conversion [28, 98], storage, man-
ufacturing, and magnetics, where atomic-level disorder and supply-chain resilience are critical [13].
Automated screening using transferable, disorder-sensitive descriptors enables efficient identification of
better performing and economically viable HEA candidates. By incorporating uncertainty quantification,
our approach can highlight compositions and regions of greatest prediction uncertainty, guiding targeted
experiments that maximize information gain. Integrating these methods into closed-loop workflows—
where computational predictions and uncertainty metrics directly inform experimental validation—not
only reduces time to discovery and deployment of new materials [99], but also iteratively improves
model accuracy through continual feedback. Continued refinement of disorder-sensitive metrics and
deeper integration with uncertainty-guided experimental workflows will further strengthen this approach
and expand its impact within and beyond alloy systems.

4. Methods

HEA modeling. HEAs were treated within the partial-occupation module (POCC) of the automatic flow
Framework for materials discovery (aflow++) 129, 30]. For each equiatomic A—B—C—D-E composition,
the module generates 600 five-atom supercell tiles based on the body-centered cubic parent structure
(bec; spacegroup #229), 49 of which it determines to be unique by symmetry [29, 30, 100]. The total
energy and derived properties of the unique tiles were obtained from DFT calculations performed with
the Vienna Ab initio Simulation Package (VASP) [64], employing projector-augmented wave (PAW)
pseudopotentials [101, 102] and the Perdew—Burke—Ernzerhof (PBE) generalized-gradient approximation
(GGA) [103]. All additional parameters and convergence criteria are as detailed in [104]. Based on the
n=49 DFT calculations, the EFA of the composition is computed as:

-1

EFA =0 {H;} ' = <\/Zn_1gi (HiHmi")2> : (1)

ole) 1

where H; is the i-tile’s enthalpy (from DFT), g; is the i-tile’s degeneracy (from POCC’s structural-
uniqueness analysis), and H; is the mean enthalpy: Hy,;, = (Z?Zlg,-H,-) / (Z?Zlg,-) [16]. 48 of the
49 structures were determined to have a degeneracy of 10, and the other a degeneracy of 120. The
properties—including EFA, g’s, Hmix—are computed automatically by aflow-POCC’s postprocessing
procedure and written to the aflow.pocc.out file. Example commands for generating the input files
and performing the postprocessing for this analysis automatically are provided in section 8 ‘Modeling
disorder’ of [29].

A total of 427 HEA compositions, drawn from combinations of 11 commonly studied transition
metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and W) [83, 105], were fully characterized using aflow-
POCC and DFT. As a proof-of-concept, only the bec parent structure was considered in this work. Since
HEAs commonly crystallize in high-symmetry structures—bcc being among the most prevalent [12, 15,
83, 105-107]—the scope facilitates an initial investigation of the relationship between composition and
key thermodynamic descriptors, such as EFA, distance to the convex hull, and DEED. Future work, espe-
cially in the context of experimental validation, should include competing high-entropy phases based on
alternative parent structures. Such extension is feasible within the current supercell-ensemble framework,
with additional calculations.
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The supercell ensemble approach implemented in aflow-POCC offers a distinct alternative to the
widely used special quasirandom structure method (SQS) [108]. SQS aims to model the disordered sys-
tem using a single, carefully constructed supercell that minimizes pair and higher-order site correlations,
providing an effective approximation to infinite-temperature disorder. This typically results in the use
of large, low-symmetry supercells. In contrast, af1low-POCC represents disorder using multiple small-
cell supercells, with ensemble averages calculated via Boltzmann weighting, thereby explicitly consider-
ing energy, temperature, and structural degeneracy. To avoid redundant configurations, each candid-
ate supercell is evaluated using the universal Force Field [100]. Degeneracy is determined by comparing
the resulting energies, which allows for efficient identification of symmetry-distinct structures without
exhaustive enumeration [30]. The small size of the supercells also makes high-throughput calculations
more feasible, enabling efficient parallelization across computing resources. Notably, ensemble averaging
with aflow-POCC has demonstrated particular effectiveness at finite temperatures [31, 50, 109, 110].
While some SQS-based workflows attempt to capture configurational effects by averaging over multiple
SQSs, the core SQS objective function [111] remains oriented toward the high-temperature limit. By
comparison, aflow-POCC provides a tunable synthesis temperature parameter to sample the relevant
thermodynamic regime for a given application. For a more detailed discussion and further methodo-
logical comparisons, see Section 8 ‘Modeling disorder’ subsection ‘Comparison to other disordered system
models’ of [29].

Convex hull analysis. To quantify thermodynamic synthesizability, we calculated DEED =
+/EFA/{AHp,;), which requires the HEA’s ensemble-average distance to the convex hull ((AHpyy)). This
quantity measures the enthalpic penalty for forming the high-entropy phase relative to the most stable
set of competing ordered phases. Quinary convex hulls and related properties were computed using

the convex hull module in aflow++ (aflow-CHULL) [34]. Accurate ab-initio convex hull construction
depends on a comprehensive database of energetically competing phases in each chemical system.

Data for each hull were assembled using two strategies. First, we included known ordered binary and
ternary compounds from the inorganic crystal structure database (ICSD) [112], recalculated with stand-
ardized DFT protocols [104]. The most critical contributions to the enthalpic penalty come from the
binary and ternary compounds, with decreasing importance for more complex chemistries. As suppor-
ted by previous studies [17, 113], higher-order (quaternary, quinary) phases contribute negligibly to the
enthalpy landscape for HEA systems on average. This is because stable binary and ternary phases act
as strong competitors, requiring any higher-order phase to be more stable than all relevant lower-order
phases. Consequently, despite the vast number of possible higher-order compositions—growing combin-
atorially with the number of elements—only very few of them are actually stable. Second, we expanded
phase coverage by redecorating common crystallographic prototypes for metallic systems [114—116] with
combinations of the 11 transition metals in this study, generating a large set of hypothetical structures.

The resulting DFT energies, from both experimental and hypothetical structures, formed the basis
for the convex hull phase diagrams. Each quinary hull contained over 2000 structures, ensuring con-
vergence of the thermodynamic properties. The aflow-CHULL module identified the stable ground-
state phases that define the minimum energy tie-surfaces (the convex hull). From this, we calculated
(AHpy) as the energetic distance between the convex hull and the centroid formation enthalpy of the
supercell ensemble representing the HEA [33, 34]. A schematic illustration of this concept is provided in
figure 6, where the relative position of compositions with respect to the formation-energy hull serves as
the basis for our synthesizability descriptor. This calculation is facilitated by the --hull_enthalpy flag
as described in Section 6 ‘Thermodynamics’ of [29].

DOS analysis. To model the electronic structure of disordered systems, we applied a statistical ensemble
approach using supercell tiles generated by the aflow-POCC framework. The total DOS and orbital-
projections, including the d-DOS, were calculated for each unique supercell tile using DFT. The DOS
and orbital-projections of the disordered HEA were then obtained as ensemble averages over all tiles,
with each tile weighted by its Boltzmann probability and degeneracy. The Boltzmann probability for the
i-tile is given by:

g exp (= (Hi — Hy,) /ksT)

Pi = 7 )
D i1 8iexp (‘ (Hi - HgS) /kBT)

(2)

where Hy, is the minimum enthalpy of the supercell ensemble and T is the HEA synthesis
temperature [29, 30]. Explicitly, the disordered d-DOS is calculated as an ensemble average over the
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Figure 6. Schematic illustration of convex hull analysis for synthesizability descriptors. The diagram shows how (disordered)
structures are evaluated relative to the formation-enthalpy (H¢)-composition convex hull, where proximity to the hull indicates a
higher likelihood of forming stable HEAs. (AHpu1) and o {H; } refer to the ensemble average distance to the hull and formation-
enthalpy standard deviation used to calculate the EFA and the disordered enthalpy—entropy descriptors. Inspired by figure 1

in [33].

d-DOS of the tiles: d-DOS (E;) = Y-, P; d-DOS; (E;), where E; denotes the j-energy value on the grid
used for calculating the DOS.

The aflow-POCC framework employs a Boltzmann statistics approach to ensemble-average the
properties of supercell configurations to describe disordered systems. At low temperatures, the ground-
state structures dominate, whereas at high temperatures the system approaches the annealing limit
where all configurations are considered equiprobable. We evaluated the relative change of the electronic-
structure descriptors with respect to 1500 K across different synthesis temperatures. As shown in figure 7,
for T > 1200K the variations in cosf and d,, shrink below ~0.5% and become effectively negligible,
indicating that the system is equilibrated in this regime with respect to this approach. Accordingly, we
select 1500 K as the reference point as it is a typical synthesis temperature for many HEAs and remains
below reported melting temperatures [107, 117-119]. The synthesis temperature is distinct from the
operational temperature, and the descriptors in this regime are only weakly sensitive to temperature,
minimizing thermal bias in the ML model. We note that the present treatment captures configurational
disorder and qualitative trends; more accurate results at elevated temperatures could be obtained by
incorporating vibrational free-energy contributions, which can be achieved within the aflow-POCC
framework with additional calculations [31, 109].

To assess the catalytic activity of HEAs, we compare their ensemble-averaged d-DOS profiles with
that of Pt, a well-established benchmark catalyst. The DOS of platinum was resolved using DFT and
shows good agreement with published theoretical calculations and photoemission measurements [120—
122]. The similarity between DOS profiles is quantified using the cosine similarity metric (cosf), defined
as:

[=5 . d-DOScana (E) d-DOSpy (E) dE
V7o, dDOS2, () dE, /[, d-DOS}, (E) dE

(3)

cosf =

where d-DOS,n4(E) and d-DOSp(E) denote the normalized d-DOS of the candidate alloy and platinum,
respectively. Larger values of cos€ indicate greater electronic resemblance to Pt, suggesting favorable
catalytic properties.

In addition to cosf, we also compute the Wasserstein distance (dy) between the d-DOS of each
candidate and that of Pt as a measure of dissimilarity. The Wasserstein distance is the minimum total
‘transport cost—the integral of probability density moved multiplied by the distance it travels—required
to transform one DOS profile into another. A smaller d,, value corresponds to a closer match to Pt,
complementing cos€ by taking into account both the overall shape and energy alignment of the DOS.
The Wasserstein distance is calculated as:

dy = / IDOSCP (E) — DOSE (E)| dE, ()
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Figure 7. Sensitivity of electronic-structure descriptors to synthesis temperature. Relative changes of the electronic structure
descriptors with respect to 1500 K are shown.

where DOSSYE(E) and DOSGPF(E) denote the cumulative distribution functions (CDF) of the d-DOS for
the candidate alloy and Pt, respectively.

ML modeling. We developed supervised ML models to predict four DFT-based descriptors that gauge
the synthesizability and catalytic performance of HEAs: EFA, DEED, cosf, and d,,. Elemental properties
were extracted from the aflow-xElement database [29], including atomic number, atomic mass, elec-
tronegativity, atomic radii, melting point, boiling temperature, and atomization enthalpy. For each alloy,
statistical descriptors—including minimum, maximum, average, max-to-min ratio, and root-mean-square
deviation (atomic mismatch)—were calculated across the constituent elements to generate the input
feature set. Feature construction was guided by descriptors commonly used for HEAs [37, 123, 124].
Random-forest regression models were trained with these features as inputs and the DFT-derived EFA,
DEED, cosf, and d,, values as outputs. Model performance was quantified by the MAE for accuracy and
the coefficient of determination (r?) for ranking capability, enabling rapid screening and prioritization of
promising HEA compositions.

ML-driven screening. We selected 22 commonly used metallic elements as HEA candidates and gen-
erated all combinatorial chemical compositions [60, 61, 83, 105]. Using the trained machine-learning
models, we predicted key material descriptors for synthesizability and catalytic performance across 26
334 unique alloy compositions. These predictions were then integrated with economic data—including
crustal abundance, elemental price, recycling rate (discretized as 10 for <10%, 30 for 10%—30%, and 50
for >30%), and supply risk—extracted from the mendeleev Python library [63]. Missing values were
imputed using the median of the dataset. This approach enabled construction of a comprehensive, mul-
tidimensional database to support accelerated discovery and informed prioritization of promising HEA
candidates with balanced properties, economic viability, and scalable manufacturing considerations.
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