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High entropy powering green energy:
hydrogen, batteries, electronics, and
catalysis
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A reformation in energy is underway to replace fossil fuels with renewable sources, driven by the
development of new, robust, and multi-functional materials. High-entropy materials (HEMs) have
emerged as promising candidates for various green energy applications, having unusual chemistries
that give rise to remarkable functionalities. This review examines recent innovations inHEMs, focusing
on hydrogen generation/storage, fuel cells, batteries, semiconductors/electronics, and catalysis—
where HEMs have demonstrated the ability to outperform state-of-the-art materials. We present new
master plots that illustrate the superior performance of HEMs compared to conventional systems for
hydrogen generation/storage and heat-to-electricity conversion. We highlight the role of
computational methods, such as density functional theory and machine learning, in accelerating the
discovery andoptimization ofHEMs. The review also presents current challenges andproposes future
directions for the field. We emphasize the need for continued integration of modeling, data, and
experiments to investigate and leverage the underlying mechanisms of the HEMs that are powering
progress in sustainable energy.

The demand for clean and abundant energy sources grows every day, driven
by climate change1–4, rising energy consumption5, geopolitical tensions, and
market volatility6,7. Promising renewable sources such as solar, wind,
hydropower, geothermal, and biomass face several implementation chal-
lenges, including low efficiencies, accessibility, and a lack of required
infrastructures that render traditional fossil-fuel-based sources—coal, oil,
and natural gas—techno-economically superior. Moreover, the efficacy of
any of these approaches strongly depends on the location. For example,
hydropower and geothermal have been highly effective for Iceland8 and
CostaRica9, two countries that generate their electricity almost entirely from
renewable energy sources. In lieu of an energy “silver bullet”, new directions
are being investigated. The ability to not only discover but also design new
materials10 is essential for meeting the host of critical constraints of the
energy industry11, including enhanced functionality, robust stability, man-
ufacturability, and having components that are abundant, replenishable,
and safe.

High-entropy materials (HEMs)12,13 have emerged as a compelling
solution for several energy challenges14–17. HEMs are characterizedbymulti-
element mixtures having multiple components occupying the same crys-
tallographic sites in (near) equal measure13,18. This random decoration of
different elements boosts the material’s configurational entropy and
enhances its thermodynamic stability19. Through entropy stabilization, new

—and sometimes counter-intuitive—chemistries have been realized20, giv-
ing rise to a unique combination of properties, including exceptional
thermo-mechanical properties, outstanding chemical stability, glass-like
thermal conductivity, robust cyclability, andhighly tunable catalytic binding
energies13. The challenge lies in their discovery, as not all combinations of
elements form single-phase, high-entropy systems.

Unlike conventional materials, where the properties can often be
predicted and testedwithin awell-defined compositional space,HEMs span
a vast and discontinuous compositional landscape due to the near-
equimolar mixing of multiple elements19,21,22. The number of possibilities
renders exhaustive experimental exploration infeasible, creating an oppor-
tunity for computational and data-driven approaches. First-principles cal-
culations and machine-learning models can rapidly screen through
thousands of potential HEM compositions, predicting their structural sta-
bility, electronic properties, mechanical strength, and chemical reactivity
before any experimental synthesis is attempted23–26. Computational studies
can also provide insights into the underlying mechanisms driving their
performance—such as the effects of lattice distortions and different ele-
mental combinations—and the influence of external conditions such as
temperature, pressure, and radiation27–30. These insights not only guide the
rational design of new HEMs but also enable the optimization of existing
systems for targeted applications.
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This review explores key green energy technologies that have been
transformed by HEMs, including hydrogen generation/storage, fuel cells,
batteries, electronics, catalysis, and biofuels (Fig. 1). The best performing
chemistries and structureshave beensummarized and tabulated.The review
highlights the crucial role of computational and data-driven methods to
accelerate their discovery and optimization. Finally, current challenges are
presented and future research directions are proposed, offering a compre-
hensive perspective on how HEMs can continue to drive innovation in
sustainable energy.

High-entropy materials: definition and evolution
HEMs are a class of materials characterized by entropy contributions
significant enough to play a role in their formation and stability13, which
are governed by the minimization of the Gibbs free energy: ΔG = ΔH −
TΔS, where H is the enthalpy (bonding and order), S is the entropy
(randomness/disorder), and T is the temperature (disorder dial)18,27,31.
While there are several contributions to the entropy, including vibrational
and electronic32, the dominant factor inHEMs tends to be configurational
ðSconfigÞ—arising in systems where multiple elements occupy the same
crystallographic site. This scenario creates substitutional disorder in
conventional alloys (e.g., steels, brasses, superalloys, and solders21), where
an impurity (e.g., carbon in steel) replaces a fraction of the principal
component (iron). If the replacement can be characterized as random/
probabilistic—a scenario that becomes more probable with increasing
temperature—then the arrangement of elements throughout the macro-
scopic crystal becomes non-unique. Disorder is a measure of the disparity
in the accessible configurations10,18,27. HEMs constitute the case where the
random impurity concentration approaches that of the principal com-
ponent—increasing the number of configurations and, accordingly, the
entropy to a level of significant influence in ΔG. When designing these
materials, it becomes convenient to define HEMs not by relative ΔH and

ΔS values, which can be cumbersome to quantify, but by the number of
elements (at least 5) and their compositions (5-35 atomic %), a definition
stemming back to the original HEM paper22. An interesting subset of
HEMs is entropy-stabilized materials, where TΔS causes ΔG to become
negative—leading to formation/stability—indicating ΔH > 033. These
materials form from an entropy-driven solid-solid transformation having
hallmark characteristics that can be measured experimentally19: (i) the
transformation is reversible, temperature-driven, and goes from a multi-
phase system (immiscible precursors) to a single phase, (ii) the transfor-
mation is endothermic—requiring heat, and (iii) the single phase con-
stitutes a disordered system with the distribution of elements being
random and homogeneous throughout the macroscopic crystal, i.e. no
clustering or phase separation. For systems where the configurational
entropy plays the dominant role, (iv) the transition temperature is
minimized at equimolar concentrations where Sconfig is maximized.
Importantly, entropy-stabilized materials need not have 5 components:
there exist examples with only two elements on the same crystallographic
site, including (Hf-Zr)TiO4

33,34. The first HEMs were discovered in 2004
and were composed exclusively of metallic components12,21,22 and have
since been extended to new chemistries including oxides, borides, car-
bides, nitrides, chalcogenides, carbonitrides, and organic-inorganic
hybrids13,35.

Synthesis and prediction
HEMs can be synthesized via conventional solid-state reaction36–38, high-
temperature and high-pressure synthesis39–41, spark plasma sintering42,43,
microwave-assisted methods44–46, hydrothermal method47–49, and sol-
vothermal method48,50. Table 1 details their advantages and disadvantages.
Moreover, HEMs with different morphologies (e.g., fibers, thin films,
nanoparticles, and nanosheets) can be processed by methods including
physical vapor deposition51,52 and electrospinning53,54.

E
lectrode

Fig. 1 | High-entropy materials for green energy applications. Reproduced with permission from American Chemical Society, Elsevier, and Wiley369–371.
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First-principles calculations such as density functional theory (DFT)
can resolve the electronic structure of molecules and periodic systems,
providing insights into the underlyingmechanisms driving their formation,
structure, and function. However, standard DFT cannot directly model
chemically disordered systems. Instead, the community employs ordered
approximants (supercells) to approximate these systems. Popular approa-
ches include special quasirandom structures (SQS)55 and the small cells
construction as implemented in the aflow++ partial occupation
module18,27. SQSmimics chemical disorder in the infinite-temperature limit
by resolving supercells thatminimize atomic-occupancy correlations,which
in practice are often large and low-symmetry, and therefore computation-
ally expensive. Instead, the small cells construction creates an ensemble of
minimally sized supercell approximants of varying correlations that are
easily parallelized on standard computing clusters. The approach captures
the range of accessible configurations at a fixed cell size and can resolve
finite-temperature effects approaching the order-disorder transition56.
Beyond pure quantum treatments, classical molecular dynamics (MD)with
empirical and semi-empirical force fields allows for larger length- and time-
scales but sacrifices some electronic detail. In contrast, quantumMDretains
electronicfidelity but is constrainedby systemsizeand sampling efficiency57.
Machine-learning (ML) force fields bridge this gap by training onDFT data
to achieve near- DFT accuracy for systems with tens of thousands of atoms,
thereby capturing local disorder and defect dynamics58,59. In a study of high-
entropy carbides, ML models trained on thermodynamic data accurately
predicted entropy-forming-abilities—a computational descriptor describ-
ing the likelihood that a composition forms a single-phase HEM based on
the small-cells construction20—aligning well with DFT results. Moreover,
ML analyses reveal that high entropy-forming-ability correlates with
minimal short-range chemical order, emphasizing the role of disorder in
stabilizing HEMs26. Monte Carlo simulations facilitate rapid compositional
and configurational screening, identifying stable phases, solute distribu-
tions, and preferential site occupancies60–63. CALPHAD-based phase dia-
gram calculations, have proven instrumental in identifying promising alloy
compositions with tailored phase fractions andmechanical properties, thus
streamlining subsequent experimental verification64. As high-throughput
databases and computational resources continue to expand, coupling DFT
withML- and artificial intelligence (AI)-based algorithms enables the rapid
screening of thousands of potential HEM compositions, predicting their
structural stability, elastic properties, and catalytic performance in a fraction
of the time required by experiments and trial-and-error calculations23–26.

Large-scale, general-purpose repositories such as aflow.org65, Materials
Project66, and OQMD67 support these efforts by providing extensive
electronic-structure data across a broad range of compounds. Meanwhile,
HEM-focused databases like the Consolidated Database of High Entropy
Materials68 collect experimentally-measured mechanical properties. The
TCHEA7 thermodynamic/properties library, part of the CALPHAD
ecosystem69, provides detailed thermodynamic and property data specific
to HEMs.

Hydrogen
Hydrogen generation
Hydrogen is abundant in compound form (e.g., hydrocarbons, water) and is
generated by reacting these compounds to release H2. The typical approach
is steam reforming, which reacts hydrocarbons with water and generates
significant greenhouse gases in the process. Instead, H2 can be produced
from water with zero emissions using renewable-powered electrolysis, i.e.
using electricity generated from sources such as solar70, wind71, and hydro72.
Electrolysis splits water into hydrogen and oxygen, involving two half-
reactions occurring at the cathode and anode electrodes of an electro-
chemical cell: the hydrogen evolution reaction (HER) and the oxygen
evolution reaction (OER), respectively. HER generates hydrogen gas H2

� �

by reducing water, whereas OER generates oxygen gas O2

� �
by

oxidizing water.
In recent years, HEMs have emerged as promising catalysts for

hydrogen generation, benefiting from a “cocktail effect” of different ele-
mental components that enhances activity/stability and cannotbe attributed
to any single component. By altering composition or stoichiometry, local
electronic environments and oxidation states can shift significantly, ren-
dering it possible to tailor catalytic behavior for optimal performance73. For
example, nanosheets of Co0.6(VMnNiZn)0.4PS3 (2022), which adopt a
monoclinic crystal structure (space group C2/m), demonstrate exceptional
HER performance with an overpotential of 65.9 mV at a current density of
10 mA cm−2 and a Tafel slope of 65.5 mV dec−1 74. The high-entropy sheet
geometry, offering higher concentrations of sulfur and manganese sites on
the edges and phosphorus sites on the basal plane, contributes significantly
to its HER performance (Fig. 2a, b). The single-phase face-centered cubic
(fcc) Ni20Fe20Mo10Co35Cr15 (2018) exhibits high corrosion resistance and
stability in both acidic and basic electrolytes—having an overpotential of
107 mV in acidic solutions and 172 mV in basic solutions at a current
density of 100mAcm−2 (Fig. 2c)—outperformingmany traditional catalysts

Table 1 | Commonly employed synthesis methods for HEMs

Methodology Description Examples Advantages Disadvantages

Conventional
solid-state-
reaction

Mix solid precursors andheat them to a very high
temperature for extended periods; atomic
diffusion occurs, generating a
thermodynamically stable product344,345

(FeCoNiCrMn)3O4
36,

(MgCoNiZn)1−xLixO
37,

[(Bi,Na)1/5(La,Li)1/5
(Ce,K)1/5Ca1/5Sr1/5] TiO3

38

Simple process, flexible composition,
solvent-free, low cost

High energy consumption,
long reaction time (from hours
to days), inhomogeneous
reaction

High-
temperature
and high-
pressure
synthesis

Mix solid precursors and heat them to a high
temperature under high pressure for extended
periods

(FeCoNiCuRu)S2
39,

(La0.2Nd0.2Sm0.2

Eu0.2Gd0.2)2Zr2O7
40,

(Sr0.2La0.2Nd0.2Sm0.2

Eu0.2)TiO3−δ
41

Flexible composition, solvent-free,
densified structure, high yield

High cost, high energy
consumption, long reaction
time (in hours)

Spark plasma
sintering

A pulsed direct current is passed through the die
and sample, achieving rapid heating of the
sample to reaction346

Ta1/6Nb2/6Hf1/6Zr1/6 Ti1/
6
42, (La1/7Nd1/7Sm1/7 Eu1/

7Gd1/7Dy1/7 Ho1/
7)2Zr2O7

43

High purity, short reaction time (in
minutes), densified structure

Expensive equipment
required, possible
inhomogeneous heating

Microwave-
assisted
methods

Polar molecules follow high frequency electric
field from microwaves and release heat to drive
the reaction347; in electrical-conductive
materials, charge carriers transport induced by
the electric field heats the material347

PtPdFeCoNi44,
IrFeCoNiCu45,
(Cr0.2Fe0.2Mn0.2Co0.2
Ni0.2)3O4

46

Very short reaction time (in seconds),
scalable process, energy efficiency,
high purity

Temperature inhomogeneity in
larger samples, porous
structure

Hydrothermal
&
solvothermal
methods

A reaction conducted in a closed system using a
solvent under (near-)supercritical conditions348

(CrMnFeNiZn)3O4
48,

(FeCoNiCrCu)3O4
50,

Pd@(YZrLaGdHf)x O2
349

Controlled particle size and
morphology, low temperature
requirement, homogeneous reaction,
scalable process, eco-friendly
(hydrothermal)

High cost, long reaction time,
high energy consumption,
impurity, safety concerns,
solvent dependency,
multi-steps
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and even somenoble-metal-free alternatives75. The corrosion resistance and
stability can be attributed to low atomic diffusion, another core-effect of
high-entropy systems22,76. In HEMs, the “sluggish-diffusion” effect slows
down the overall kinetics of atomic motion and phase transformation,
which enhances structural integrity and corrosion resistance29. Another
example is the phosphorus-modified amorphous high-entropy CoFe-
NiCrMn compound (2023), developed by one-step electrodeposition on
nickel foam, with remarkable HER and hydrazine oxidation reaction
(HzOR) performance: the overpotentials are as low as 51 and 268mVat 100
mAcm−2 forHERandHzOR, respectively. Elements like iron andnickel for
HER and phosphorus and chromium for HzOR (Fig. 2d) contribute to
lowering energybarriers and improving reactionkinetics77.Morphology can
also be carefully designed in HEMs to boost performance. NiCoFePtRh
nanoparticles (2021) have been fabricated having an average diameter of
1.68 nm, achieving an ultrahigh mass activity of 28.3 Amg−1 at -0.05 V (vs.
RHE) for HER in 0.5 M H2SO4 solution, 40.4 and 74.5 times higher than
commercial Pt/C and Rh/C, respectively (Fig. 2e)78. Likewise, CoCrFeNi
(2021), a single-phase fcc system, shows anHERoverpotential only 60meV

larger thanPt at 1mAcm−2, but significantly better than pureNi or stainless
steel79. HEMs also demonstrate improved catalytic activity and durability
under the oxidative conditions of OER80–83. NiFe and NiCoFe alloys are
known for excellentOERactivity, and additional non-noble-metal elements
were incorporated to form high-entropy counterparts84. AlNiCoFeX (X =
Mo,Nb,Cr) (2019) exhibits a 240mVoverpotential anda46mVdec−1 Tafel
slope at 10 mA cm−2 (Fig. 2g), attributed to its higher oxidation states
enhancing oxygen adsorption on the surface. The incorporation of addi-
tionalmetal species has also proven to be an effective strategy for improving
electrochemical durability over extended cycling periods (Fig. 2h).

Proton-exchange membrane (PEM) electrolysis is a promising tech-
nology for green hydrogen generation. However, its scale-up hinges on
developing new highly active electrocatalysts that overcome the sluggish
kinetics of OER under acidic conditions. Traditional OER electrocatalysts
face three critical challenges: (i) the high operating potential required to
driveOER in acidic environments (typically 1.8-2.2V) accelerates corrosion
and dissolution of the electrocatalysts, (ii) the strongly acidic environment
promotes catalyst oxidation, leading to reduced electrocatalytic activity and

Fig. 2 |Water electrolysis and fuel-cell reactions. a Illustrations of CoPS3 and high-
entropy counterpart CoVMnNiZnPS3

74. b Free-energy diagram of the edge sites in
CoPS3 and CoVMnNiZnPS3 for the hydrogen evolution reaction (HER)74.
c Electrochemical stability of the Ni20Fe20Mo10Co35Cr15 performing HER in 0.5 M
H2SO4 after annealing at 1150

∘C and 800 ∘C for 1 h75. d The degree to which each
metal in CoFeNiCrMnP contributes to the HER and hydrazine oxidation reaction
(HzOR)77. e Comparisons of the mass activities of ultrasmall high-entropy alloy
NiCoFePtRh supported on carbon (us-HEA/C), commercial Pt/C, and commercial
Rh/C at different potentials78. f Differential reduction free energy dGred

� �
of

adsorbed atomic oxygen on a randomly chosen subset of sites on the CoCrFeNi

HEMsurface vs. the sumof the atomic numbers of the threemetal atoms defining the
site Σ3 Z

� �
79. Shaded regions illustrate different stable phases of O: adsorbedO atom

(>2.47 eV), liquid water (referenced to gas-phase O2 and H2 at the standard state;
<2.47 eV), and gas-phase O2 (<0 eV). g, h Tafel curves and current retentions of
nanoporous HEMs and ordered counterparts while performing oxygen evolution
reaction84. i Near-continuous *OH adsorption energy spectra during the oxygen
reduction reaction on IrPdPtRhRu87. (a, b) and (e–h) are reproduced with per-
mission from the American Chemical Society74,78,79,84. (c, i) are reproduced with
permission from Elsevier75,87. (d) is reproduced with permission from Wiley77.
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compromised long-term stability, and (iii) the reliance on rare and
expensive noblemetals has driven the scientific community to explore acid-
stable OER electrocatalysts that minimize the use of these precious
materials85. Given their intrinsic properties, HEMs are emerging as ideal
platforms to address these challenges. Figure 3a compares the performance
of HEMs and traditional materials for OER applications under acidic
conditions. For the catalysts without precious metals (blue rhombus),
HEMsoutperform traditionalmaterialswith loweroverpotentials and lower
Tafel slopes. Among them, CoFeNiMoWTe demonstrates one of the lowest
combined overpotentials and Tafel slopes. The detailed performance and
stability data for these materials are provided in Supplemental Table S.1.

Alongside experimental advancements, computational studies have
played a key role in decoding and predicting the functionality of HEMs for
hydrogen-related applications. For example, in Co0.6(VMnNiZn)0.4PS3

74,
DFT was utilized to investigate hydrogen adsorption free energies and
water-dissociation barriers, revealing that the Mn sites lower the Volmer-
stepbarrier. Similarly, researchonNiCoFePtRhnanoparticles78 usedDFT to
map hydrogen-adsorption free energies (ΔGH� ), demonstrating that the
tailored electronic states of Pt and Rh reduce ΔGH� and desorption acti-
vation barriers. In another study on CoCrFeNi79, DFT showed that partially
oxidized surfaces enhance HER activity in acidic media by modifying sur-
face reactivity, emphasizing that the elemental composition of the first
nearest-neighbor shell strongly influences site reducibility (Fig. 2f). In the
OER realm, density of state (DOS) calculations coupled with eg orbital
occupancy analysis identified dopant elements that optimize O-adsorbate
binding energies84. Beyond DFT, ML methods have emerged as powerful
tools for high-throughput HEM discovery in hydrogen generation. Saidi et
al.86 combined DFT with a convolutional neural network (CNN) to screen
over 4000 noble-metal-free compositions within the CoMoFeNiCu system
for optimal hydrogen adsorption energies, helping the design of an alloy
with adsorption properties comparable to Pt(111). DFT provided hydrogen
adsorption energies and thermodynamic stability data (via enthalpy of
mixing), which served as training inputs for the CNN. Additional ML
models, such as random forest and gradient boosting, were evaluated, but
the CNN proved to be the most accurate in capturing local chemical
environments and complex composition-property relationships.

Fuel cells
The reverse reactions, hydrogen oxidation reaction (HOR) and oxygen
reduction reaction (ORR), drive fuel cells generating electricity from
hydrogen and oxygen. HOR occurs at the anode of fuel cells—where H2 is
oxidized to produce protons and electrons—while ORR takes place at the
cathodewhere oxygen is reduced towater or other species, dependingon the
medium.

A quinary IrPdPtRhRu alloy (2019)87 with a fcc structure exhibits an
ORR overpotential roughly 20 mV lower than pure Pt(111) under com-
parable conditions. By fine-tuning the composition further, an optimized

variant, Ir0.102Pd.320Pt0.093Rh0.196Ru0.289, demonstrates a ~ 40 mV lower
overpotential compared to Pt(111). Meanwhile, fcc PdNiRuIrRh (2023)88

achieves an alkalineHORmass activity of 3.25mAμg−1—eight timeshigher
than that of Pt/C. This enhancement is driven by tailored Pd-Pd-Ni/Pd-Pd-
Pd bonding environments that improve *H adsorption, with oxophilic Ru
or Ni further promoting water activation.

Computational studies have been crucial for understanding these
remarkable fuel-cell performances and guiding HEM design. For
IrPdPtRhRu alloys (2019)87, a theoretical model was developed to
predict the absorption spectra for ORR intermediates identifying the
most active sites for HEMs. The adsorption energies of *OH on a
random subset of possible binding sites were calculated by DFT and
then used to train a ML model to predict the full span of adsorption
energies on HEM surfaces (Fig. 2i). The model resolved a near-
continuous spectrum of energies, indicating that the catalytic activity
can be tailored through specific HEM compositions. In 2023, a study
employed an ML-potential-based Monte Carlo simulation to explore
how local coordination environments shift under operating conditions
in a PdNiRuIrRh system, revealing the specific atomic cluster
responsible for the eightfold activity enhancement over Pt/C88.

Table 2 summarizes several studies applying ML to investigate HEMs
for catalysis.

Hydrogen storage
Essential to enabling a hydrogen-based energy economy is the development
of safe, effective, and scalable solutions for its storage. If a practical storage
solution can be achieved, hydrogen can act as a type of “green battery” to
help address the intermittency issues of other renewable energy sources. It
can be generated and stored using excess renewable energy, then released
during times of low supply and high demand, ensuring a stable and reliable
energy grid89. Hydrogen is an excellent candidate for such an application,
having a three times higher energy density than traditional fossil fuels90.

Traditional storage materials face several limitations, including low
hydrogen-to-metal atom ratios and desorption processes demanding high
temperatures for prolongedperiods91: about 590K forMgH2

92 and673K for
NaBH4 (Fig. 3b)

93. Stability is another challenge, with conventional mate-
rials undergoing degradation over multiple cycles of hydrogen absorption
and desorption, resulting in lower capacities over time89. Repeat cycling
results in particle agglomeration and sintering in MgH2 and the formation
of intermediate phases inNaAlH4 (for exampleNa3AlH6 andNaH), leading
to a reduction in effective reaction surface area and incomplete reaction
reversibility94. Safety concerns remain a barrier: high-pressure (up to 700
bar) and cryogenic (liquid hydrogen) storagemethods pose the risk of leaks
and explosions95.

HEMs have been designed to address several of these limitations. First,
for hydrogen to be absorbed into the material, it must initially be adsorbed to
the surface. The random atomic decorations inHEMs result in a large surface

Fig. 3 | High-entropy materials in hydrogen-
related applications. a Performance of various OER
electrocatalysts at a current density of 10mAcm−2 in
0.5 M H2SO4. The green dashed line indicates the
lowest overpotential that can be achieved using non-
precious metal catalysts. b Comparison of deso-
rption temperature (K) and hydrogen storage
capacity (wt%) for traditional metal hydrides and
HEMs. A green band represents the typical operat-
ing temperature range for hydrogen fuel cells (60-
90 ∘C). Data are available in Supplemental
Table S.1 and S.2.
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area and numerous distinct active sites, offering multiple reaction pathways
and thus enhancing the kinetics96,97. Moreover, the random coordinations
convert otherwise inactive species into highly active reaction centers, as
demonstrated for Cu in FeCoNiCuMn nanoparticles (2023) (Fig. 4a)98. While
monometallic Cu is inactive for both HER and OER, DFT calculations reveal
that Cu sites in fcc FeCoNiCuMn nanoparticles possess the lowest energy
barrier for water dissociation ðΔG�

H2O
! ΔG�

OHÞ, outperforming Fe, Co, Ni,
and Mn sites (Fig. 4b). The site’s high activity is attributed to electron
donations from lower-electronegativity species (Mn, Fe, Co), driving com-
petitive adsorption. Other studies have shown that elements such as palla-
dium, known for its excellent hydrogen adsorption properties, can be
effectively incorporated into HEMs to enhance surface interactions99,100.

Once hydrogen molecules are adsorbed onto the surface, they dis-
sociate into atoms and begin to diffuse into the bulk of the material. The
varied atomic environments of HEMs provide a large number of interstitial
sites of different shapes and sizes, creating various pathways that allow
hydrogen atoms to migrate efficiently through the material101. Local lattice
distortions—a result of these varying atomic environments and another
core-effect of high entropy22—further facilitate the trapping and release of
hydrogen atoms. However, the diffusion process is not straightforward in
HEMs. Diffusion pathways for hydrogen atoms in fcc FeCoNiCrMn (2021)
have been calculated with DFT: the energy barriers span a wide range from
0.17 to 1.05 eV, indicating a more complex energy landscape compared to
pure metals (Fig. 4c)102. The incorporation of elements such as zirconium,

Table 2 | Predicting catalytic properties of high-entropy materials with machine learning

Year Composition Application Modeling approach Ref.

2024 Mo-Cr-Mn-Fe-Co-Ni-Cu-Zn Nitrogen reduction reaction in aqueous
environments

Deep neural networks 350

2023 PdNiRuIrRh Alkaline hydrogen oxidation reaction Monte Carlo simulations using machine learning
potentials

88

2023 PtPdRhAgCo, PtPdRuAgCo, PtPdRhAgFe,
PtPdRuAgFe, PtPdRuAgNi

Water-gas shift reaction Gaussian process regression 351

2024 ZnTe-MgTe-CaTe-S-Se Photocatalytic water splitting Secure independence screening and sparsifying
operator

352

2024 (CoFeMnCuNiCr)3O4 Solvent-free aerobic oxidation of benzyl alcohol Adaptive boosting, categorical boosting, random
forest, extreme gradient boosting

353

2023 Ag-Ir-Pd-Pt-Ru Oxygen reduction reaction Gaussian process regression 354

2024 CoCuGaNiZn, AgAuCuPdPt CO2 and CO reduction reaction Gaussian process regression 355

2024 CoMoFeNiCu Hydrogen evolution reaction Convolutional neural network, random forest,
decision tree, gradient boosted decision tree

356

2024 CoMoFeNiCu Ammonia decomposition reaction XGBoost, machine learning force fields 86

2024 Fe-Co-Ni-Ru Enhanced oxygen evolution reaction, hydrogen
evolution reaction, and CO2 reduction reaction

Support vector machine 357

2024 FeCoNiCuMo CO2 reduction reaction Neural network 173

2024 FeCoNiCuZn Nitrate adsorption for reduction to ammonia Random forest regression, gradient boosting
regression, AdaBoost regression, extra trees
regression

358

Fig. 4 | Hydrogen storage. a Illustration of hydro-
gen and oxygen adsorption onto a high-entropy
surface98. b Gibbs free energy (ΔG�

H) profiles for
water dissociation on FeCoNiCuMn nanoparticles,
resolved at distinct sites and specified by site
centers98. c Hydrogen diffusion pathways in FeCo-
NiCrMn, where red, blue, and green lines represent
pathways between octahedral interstitials (OI) and
tetrahedral interstitials (TI), TI-TI, and OI-OI,
respectively102. d In situ synchrotron radiation X-ray
diffraction (λ = 0.2071 Å) and phase content during
hydrogen desorption of TiZrNbHfTa in dynamic
vacuum104. (a, b) are reproduced with permission
from Royal Society of Chemistry98. (c, d) are
reproduced with permission from Elsevier102,104.
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vanadium, and niobium has also been shown to further enhance hydrogen
absorption kinetics by creating more favorable pathways for diffusion103.

Microstructural features—such as grain boundaries, defects, and phase
interfaces—are influenced by high entropy and also strongly affect hydro-
gen diffusion within thematerial. A combined theoretical and experimental
investigation of TiZrNbHfTa (2018) revealed that phase transformations in
this system improvedhydrogen storage capacity by providing stable sites for
hydrogen incorporation and efficient pathways for diffusion104. These phase
transformations were monitored in reverse (i.e. during hydrogen deso-
rption) using in-situ synchrotron radiation X-ray diffraction (Fig. 4d). The
fully hydrogenated TiZrNbHfTa system exists as a fcc dihydride phase. An
increase in temperature triggers an initial release of hydrogen and the
nucleation of a secondary tetragonal monohydride phase. Continued des-
orption reduces the relative content of theoriginaldihydridephase and leads
to a contraction of the c-axis in the secondary monohydride phase.
Eventually, the alloy transitions to its preferred dehydrogenated state: a
body-centered cubic (bcc) crystal. Enhanced hydrogen diffusion has also
been demonstrated in MgAlTiFeNi, which rapidly releases all its hydrogen
on the order of a few seconds and at temperatures 100 ∘C lower than that of
commercial MgH2

105. ML algorithms have been employed to predict
hydrogen absorption and release capacities in HEMs, facilitating their dis-
covery and optimization for hydrogen storage106. A DFT-informed, multi-
objective Bayesian optimization framework was developed to screen can-
didate systems and led to the discovery of eight newHEMs107. Among these,
bcc VNbCrMoMn (2024) exhibits exceptional capacity, storing 2.83 wt%
hydrogen at room temperature and ambient pressure, surpassing that of
state-of-the-art LaNi5H6 and TiFeH2, which store 1.38 and 1.91 wt%
hydrogen, respectively.

Figure 3b plots the hydrogen storage capacity as a function of the
desorption temperature. HEMs demonstrate a significant advantage at
lower desorption temperatures (blue area). In many applications, such as
portable hydrogen storage and backup power systems, reducing reliance on
additional heating improves overall energy efficiency. Furthermore, since
many hydrogen fuel cells operate at moderate temperatures (e.g., PEM fuel
cells at 50-80 ∘C), the ability of HEMs to efficiently release hydrogen within
this range eliminates the need for complex heating mechanisms and
enhances performance.

Batteries
Next-generation batteries are rapidly being developed to enable electric
vehicles, energy storage systems, the aerospace industry, and autonomous
electric devices108–111. Among these, (i) lithium-ion batteries possess high
energy densities, high coulombic efficiencies, and low self-discharge112,113; (ii)
lithium-sulfur batteries are being investigated for increasing energy
densities114–116; and (iii) solid-state batteries offer a promising solution for the
flammable and toxic organic liquid electrolyte in batteries117. However, bat-
tery materials face several challenges hindering their energy and power
densities, including sluggish ion transport kinetics during (de)intercalation,
limited structure stability/cyclability, and a low-voltage dischargingplateauof
their cathodematerials. A high-entropy design has been shown to effectively
address these limitations. As with high-entropy catalysts, the multi-element
composition of high-entropy batteries enables tailored electrochemical
behavior118. Furthermore, through the stabilization of new and unique ele-
mental mixtures, HEMs offer a promising pathway for reducing reliance on
critical elements, a persistent challenge for these ubiquitous energy storage
systems. HEMs have been investigated as battery electrodes, chemical
anchors of polysulfides in lithium-sulfur batteries, and the electrolyte in
solid-state batteries. In 2019, a rhombohedral-structured compound,
NaNi0.12Cu0.12Mg0.12Fe0.15Co0.15Mn0.1Ti0.1Sn0.1 Sb0.04O2, was prepared and
applied as a cathode material for sodium-ion batteries. The material exhibits
impressive stability and rate capability, retaining 83% of its capacity after 500
cycles and maintaining 80% capacity retention at a charge-discharge rate of
5.0 C119. In 2021, rocksalt Li1.3Mn0.1Co0.1Mn0.1Cr0.1Ti0.1Nb0.2O1.7F0.3 (space
group Fm3m) was synthesized and applied as a cathodematerial for lithium-
ion batteries. The material demonstrates rapid lithium-ion transport, 40%

greater specific energy than lower entropy counterparts, a superior discharge
capacity of > 170mAhg−1 when cycled at a current of 2A g−1, and long-term
cycling stability120. In 2023, high-entropy solid-state electrolyte
Li5.5PS4.5Cl0.8Br0.7 (space group F43m) was reported to have an outstanding
ionic conductivity of 22.7 mS cm−1 at room temperature, resulting in stable
cycling over 700 cycles with minimal capacity degradation121. Most recently,
in 2024, nano Pt0.25Cu0.25Fe0.15Co0.15Ni0.2 with a fcc structure was synthe-
sized and integrated into the sulfur cathode. The pouch cell with this com-
posite cathode achieves a high capacity retention of 71.3% after 43 cycles at
0.1 C122.

DFT calculations are valuable tools for exploring battery materials123,
especially in understanding the underlying mechanisms of HEMs in bat-
teries. Band structure and DOS calculations show reduced bandgaps in
HEMs (e.g., Fig. 5a), which enhances the electronic conductivity of the
electrodes and promotes reaction kinetics124–128. Ionic migration path
models reveal both lower barriers and final state energies in HEMs (Fig.
5b)124. Lower barriers boost ionic conductivity, while lower final state
energies suppress atomic site rearrangements and corresponding phase
transition processes in low-voltage zones—enhancing the overall energy
density. Differential charge density diagrams (Fig. 5c) demonstrate stronger
electron interactions in HEMs, illustrating efficient adsorption and transfer
of ions127. DFT calculations also indicate that high-entropy anodes experi-
ence a smaller volume expansion with lithium-ion incorporation, improv-
ing cyclability (Fig. 5d)126. For Li-S battery systems,major challenges include
the sluggish and complex phase transition of sulfur species during electro-
chemical reactions, the electrical insulating nature of lithium polysulfides
(LiPS) and sulfur, and the “shuttle” effect depleting active material from the
cathode—resulting in less cycling stability and reduced coulombic
efficiency114,129,130. Sulfur-hosted HEMs address these issues. HEMs have
shown higher binding energies and smaller bond distances (Fig. 5e), indi-
cating stronger interactions and better affinities to LiPS than samples with
single metal species. Enhanced electron transfer in HEMs during LiPS
transformations have been further confirmed by analyses of the Bader
charges and charge density difference contours122. HEMs therefore serve as
an anchor to restrain LiPS via chemical confinement, as well as a catalyst for
redox reactions in the cathodes114.

Electronics
Semiconductors are the foundation of modern electronic and photonic
devices, forming the basis of transistors, diodes, andphotovoltaic cells131.No
industry is under as much demand, with metal-oxide-semiconductor field-
effect transistors (MOSFETs) being themostnumerouslyproduced artificial
objects in history132. While effective, traditional materials such as Si and Ge
are reaching their physical limits, particularly in the context ofMoore’s Law,
which predicts the doubling of transistors on amicrochip every two years133.

As transistors are becoming smaller, issues such as quantum tunneling,
heat generation, and electron scattering becomemore pronounced, limiting
the performance and reliability of semiconductor devices134. Additionally,
emerging semiconductor-based technologies such as energy storage135,
thermoelectric materials136, photocatalysis137, and advanced photovoltaic
systems138 demand materials with superior performance, i.e. higher carrier
mobility, thermal stability, and mechanical strength139.

In response to these challenges,HEMshave been adopted as a solution.
By tailoring element combinations in HEMs, researchers can optimize
bandgaps, carrier concentrations, and defect densities to enhance semi-
conductor performance140,141, enabling more efficient, reliable, and versatile
devices for energy conversion, storage, catalysis, CO2 reduction, and beyond
(Table 3)142,143.

Photovoltaics
Photovoltaic devices such as solar cells have become popular for passive and
sustainable energy generation, especially as they have become more man-
ufacturable. However, several challenges, including limited efficiency and
durability constrain their broader application144–146. Through composi-
tional-tuning, HEMs have been designed to have bandgaps that absorb a
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broader spectrum of sunlight, enhancing their efficiencies147. High-
throughput screening of rare-earth fluorite-type oxides, most of which
exhibit a fluorite structure (Fm3m) while others exhibit a bixbyite structure
(Ia3), reveal a range of bandgaps spanning 2.0 eV ((CeSmPrY)O2) to 4.9 eV
((CeLaSmYZr)O2) (2023)

148. These materials exhibit both high electron
mobility and appropriate energy levels for solar cell integration, demon-
strating utility for various light absorption applications.

Photocatalysis
The reduction of CO2 into valuable hydrocarbons and fuels is critical for
addressing climate change and developing sustainable energy systems.
High-entropy oxide TiZrNbHfTaO11 (2022), with various structural
defects, exhibits enhanced photocatalytic activity for the conversion of CO2

to CO and H2O to H2
149. Its superior efficiency compared to traditional

catalysts like TiO2 and BiVO4 is due to lattice strain and oxygen vacancies
which improve charge separation and reduce electron-hole recombination.
Additionally, the multi-cation composition enhances light absorption
across a broad spectrum, while the dual-phase structure improves charge
carrier mobility. HEMs also show promise in other photocatalytic appli-
cations, such as environmental remediation and pollutant degradation.

Rare-earth high entropy oxides have been explored in photocatalytic
degradation of organic pollutants150, exhibiting bandgaps ranging from 1.91
to 3.0 eV and demonstrating exceptional photocatalytic activity.

Thermoelectrics
Thermoelectric materials present a promising waste-heat recovery solution,
converting a temperature differential into electricity and vice versa. The
maximum efficiency achievable by a thermoelectric at a given temperature is
determined by the dimensionless figure of merit, zT = S2σT/κ, where S is the
Seebeck coefficient, σ is the electrical conductivity, T is the absolute tem-
perature, and κ is the thermal conductivity151. zT depends on both electronic
transport (S andσ) and thermal transport properties (κ) of amaterial,with the
optimal thermoelectric having high electronic conductivity and low thermal
conductivity. The intrinsically counter-correlated behavior between electro-
nic and thermal transport properties makes the enhancement of zT a very
challenging task152.

HEMs offer a new path in the design of thermoelectric materials.
Increased zT values can be achieved through disorder-driven enhanced
phonon scattering and lattice distortions, compositionally-optimized carrier
concentrations, and electronic band structures. This was accomplished in a

a b

c

ed

Fig. 5 | Batteries. a Density of states plot for cathode materials in sodium ion
batteries: pristine Na3V2(PO4)2F3 (p-NVPF) and high-entropy NVPF (HE-
NVPF)124. bThemigration energy profile of p-NVPF andHE-NVPF124. cDifference
charge-density maps of conventional and high-entropy Prussian blue analogues127.
d Structural models of Fe3O4 and high-entropy spinel

Co0:2Mn0:2V0:2Fe0:2Zn0:2
� �

3O4 before (up) and after (down) incorporating the
same amount of lithium-ions. Corresponding volume expansion rates can then be
calculated126. e Geometry configuration of Li2S6 binding to high-entropy oxide
(MgCoNiCuZn)O114. (a–d) are reproduced with permission from Wiley124,126,127.
(e) is reproduced with permission from Elsevier114.
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high-entropyPbSe-based systemPb0.89Sb0.012Sn0.1Se0.5Te0.25S0.25 (2021)with
a rocksalt structure reported to have a zT of 1.8 at 900 K—higher than other
PbSe-based materials153 (Fig. 6). Similarly, the high-entropy perovskite
Sr(Ti0.2Fe0.2Mo0.2Nb0.2Cr0.2)O3 (2020) with a Pm3m space group demon-
strates reduced lattice thermal conductivity due to enhanced phonon scat-
tering from the introduction of five multivalent cations at the B site. This
design reduces the phononmean free path from0.8 nmat room temperature
to 0.5 nm at 1100 K, lowering the thermal conductivity to 0.7 W m−1K−1 at
1100 K154. High thermoelectric performance has been achieved in high-
entropy rocksaltAgSnSbSe1.5Te1.5 (2020), with a peak zT of 1.14 at 723K and
an average of about 1.0 over a wide temperature range of 400-773 K—nearly
double the performance of AgSnSbSe3 (peak zT of 0.65 and an average of
about 0.47). This is driven by Se/Te anion disorder, which introduces addi-
tional point defects and dislocations, enhancing phonon scattering and
effectively reducing the lattice thermal conductivity to 0.32Wm−1K−1 at 723
K, thereby improving thermoelectric performance155.

Figure 6 provides a comprehensive comparison of thermoelectric
performances as a function of temperature for traditional materials and
HEMs. HEMs are clustered in the mid-temperature region (highlighted in
blue), where they exhibit a higher average zT than traditional materials of
the same material family. Among them, Ge0.61Ag0.11Sb0.13Pb0.12Bi0.01Te, a

GeTe-based HEM, achieves the highest zT, surpassing conventional GeTe-
based thermoelectric materials. Together with other high-performance
examples, it exemplifies the potential of high-entropy engineering in opti-
mizing thermoelectric performance through compositional tuning.

The band structure and DOS provide insights into the enhanced
electronic and thermoelectric properties of HEMs. By capturing
changes in lattice parameters, orbital hybridization, and defect states,
computational modeling reveals the mechanisms through which
alloying and compositional tuning optimize carrier transport. In SnTe-
based HEMs, DFT studies reveal that alloying with Pb, Ge, and Mn
promotes valence-band convergence, thus increasing the effective
carrier mass and the Seebeck coefficient. For instance, rocksalt struc-
ture Sn0.25Pb0.25Mn0.25Ge0.25Te (2021) achieves a peak zT of 1.52 at
823 K, owing to carefully engineered band structures and minimized
defect scattering156. Meanwhile, Cu0.8Ag0.2(ZnGe)0.1(GaIn)0.4Te2
(2021) exhibits pronounced lattice distortions at Cu sites—influencing
the valence band edge dominated by Cu-d and Te-p orbitals—leading
to an improved zT of 1.02 at 820 K. This high-entropy design reduced
the thermal conductivity of CuInTe2 by more than 80%. DFT calcu-
lations indicate that substitutions at Cu sites can balance the trade-off
between carrier scattering and low thermal conductivity, resulting in

Table 3 | Applications of high-entropy semiconducting materials

Year Field Material Description Ref.

2022 Energy storage [(K0.2Na0.8)0.8Li0.08-Ba0.02Bi0.1]
(Nb0.68Sc0.02-
Hf0.08Zr0.1Ta0.08Sb0.04O3

Lead-free energy storage capacitor achieving a giant recoverable energy density of 10.06 J cm−3

with an ultrahigh efficiency of 90.8%
359

2022 Energy storage (Bi3.25La0.75)(Ti3−3xZrx-HfxSnx)O12 High-energy density capacitor achieving an energy density of 182 J cm−3 with an efficiency of
78% at an electric field of 6.35 MV cm−1

360

2024 Energy storage Lix(MgCoNiCuZn)O Improved electrical conductivity across a wide range of temperatures (79-773 K) and pressures
(up to 50 GPa), suitable for Li-ion battery applications under extreme conditions

361

2019 Optoelectronics SiGeSn Narrowed bandgap of 0.38 eV and local lattice distortions with low vacancy formation energies
due to bond reformation

362

2023 Optoelectronics (La0.2Ce0.2Nd0.2-Gd0.2Bi0.2)2Ti2O7 Efficient photo-detection capabilities with a bandgap of 3.16 eV, excellent stability with only 5%
attenuation in photocurrent after 6 months

363

2021 Photocatalysis TiZrHfNbTaO6N3 Narrowed bandgap of 1.6 eV coupled with excellent stability 364

2022 Photocatalysis TiZrNbHfTaO11 Improved photocatalytic activity for CO2 conversion attributed to unique dual-phase structure,
lattice defects, and efficient charge carrier dynamics

149

2022 Photocatalysis (Co,Cu,Mg,Ni,Zn)O Tunable bandgap ranging from 1.47 to 3.38 eV, suitable for visible light harvesting and
photocatalytic applications

365

2023 Photocatalysis (CaxZrYCeCrx)O2 Enhanced piezo-photocatalytic activity at 38 at% Ca, attributed to prolonged carrier lifetimes
and efficient charge separation induced by ferroelectric polarization

366

2016 Thermoelectrics (BiSbTe1.5Se1.5)1−x-Agx Reduced lattice thermal conductivity of 0.47Wm−1K−1 at 400 K due to severe lattice distortions,
achieving a peak zT of 0.63 at 450 K with the addition of 0.9 at% Ag

214

2017 Thermoelectrics PbSnTeSe Reduced lattice thermal conductivity of less than 0.6 Wm−1K−1 at room temperature and a peak
zT of 0.8 at 873 K due to severe lattice distortions after 1.5% La doping

214

2018 Thermoelectrics Cu3SnMgInZnS7 Reduced lattice thermal conductivity and single-phase stability 158

2020 Thermoelectrics Sr(Ti0.2Fe0.2Mo0.2-Nb0.2Cr0.2)O3 Low lattice thermal conductivity of 0.7Wm−1K−1 at 1100Kdue to enhanced electron-phononand
Umklapp scattering

154

2020 Thermoelectrics AgSnSbSe3 Low lattice thermal conductivity of 0.47 W m−1K−1 at 673 K due to cation disorder and phonon
anharmonicity, achieves a peak zT of 1.14 at 723 K with Te alloying

155

2021 Thermoelectrics Cu0.8Ag0.2(ZnGe)0.1-(GaIn)0.4Te2 Low thermal conductivity of 0.51 W m−1K−1 and a peak zT of 1.02 at 820 K 157

2021 Thermoelectrics Pb0.935Na0.025Cd0.04-Se0.5S0.25Te0.25 Low lattice thermal conductivity of 0.33 W m−1K−1 and a peak zT of 2.0 at 900 K, due to band
convergence and hierarchical structures that scatter heat-carrying phonons

160

2021 Thermoelectrics Sn0.25Pb0.25Mn0.25-Ge0.25Te Low lattice thermal conductivity and an enhanced zT of 1.52 at 823 K, achieved through
enhanced phonon scattering

156

2021 Thermoelectrics AgMnGeSbTe4 Low lattice thermal conductivity of 0.54Wm−1K−1 at 300Kandapeak zTof 1.27at 773K resulting
from lattice distortions and band convergence

367

2022 Thermoelectrics AgMnSn0.25Pb0.75-SbTe4 High-entropy alloy with a reduced lattice thermal conductivity of 0.54Wm−1K−1 and a peak zT of
1.3 at 773 K, achieved through lattice distortions and band convergence

260

2022 Thermoelectrics Sr0.9La0.1(Zr0.25-Sn0.25Ti0.25Hf0.25)O3 Low thermal conductivity of 1.89 W/mK and a high Seebeck coefficient of 393 μV/K at 873 K 368

2022 Thermoelectrics Ge0.61Ag0.11Sb0.13-Pb0.12Bi0.01Te Reduced lattice thermal conductivity of 0.3 W m−1K−1 and a peak zT of 2.7 at 750 K by tuning
electron and phonon localization

159
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improved thermoelectric efficiency157. In high-entropy sulfides, such as
Cu5SnMgGeZnS9 (2018), DOS analyses highlight the stabilization of
complex phases via configurational entropy. By revealing Cu-3d and
S-3p states near the valence-band maximum, these calculations link
local strain reduction to enhanced phase stability and moderate ther-
moelectric performance158.

Phonon transport plays a pivotal role in determining the thermo-
electric performance of HEMs. Computational methods have helped
unveil the mechanisms by which entropy-driven lattice dynamics and
structural complexity enhance thermoelectric efficiency. In high-
entropy GeTe-based systems, Ge0.61Ag0.11Sb0.03Pb0.12Bi0.01Te (2022)
simulations reveal the dual role of entropy in delocalizing electron dis-
tributions and localizing phonons. The calculated charge density maps
show that increased crystal symmetry reduces electron localization,
promoting band convergence and enhancing electrical transport prop-
erties. Simultaneously, entropy-induced disorder enhances anharmo-
nicity, suppressing transverse phononmodes and leading to significantly
reduced lattice thermal conductivity. These computational insights align
with experimental observations of a high zT of 2.7 at 750 K159. For Cd-
doped p-type chalcogenides Pb0.935Na0.025Cd0.04Se0.5S0.25Te0.25 (2021),
theoretical models provide amechanistic understanding of how alloying
tunes both electronic and thermal transport. DFT studies demonstrate
that lattice distortions induced by Cd doping enhance phonon scattering
while maintaining a stable electronic transport framework. The calcu-
lations also reveal that hierarchical nanostructures and entropy-
stabilized matrices synergistically reduce lattice thermal conductivity
while optimizing the Seebeck coefficient and carrier mobility, con-
tributing to a zT value of 2.0 at 900 K160.

Biofuels
Significant effort has been invested in producing valuable liquid fuels and
chemicals from biomass feedstock. Biomass—which is abundant, renew-
able, and globally available161–163—primarily consists of hemicellulose, lig-
nin, and cellulose164,165. The quality of furfural-based biofuels, produced
fromhemicellulose, dependson the lengthof its carbonchains,whichcanbe
extended through oxidative condensation reactions with aliphatic alcohols.
These reactions cannot be performed with excessive heat, and developing
catalyst systems operating at mild temperatures remains a significant
challenge. In 2023, a non-noble-metal-based HEM, MgLaFeMnCu, fea-
turing a spinel phase structure (space group Fd3m), demonstrated excep-
tional catalytic performance. As illustrated in Fig. 7e, this catalyst
synthesizedC7 toC17 fuel precursors at ambient temperatures, significantly
outperforming conventional systems in operational efficiency and energy

requirements166. Similarly, lignin, the second largest component of renew-
able biomass, is an essential source for biofuel. However, the pyrolysis of
lignin typically results in high-oxygen content products that, when used as
biofuels, suffer from low energy density, unstable combustion, and excessive
corrosion. The selective removal of oxygen from natural lignocellulosic
materials is critical for producing biofuels167,168. To address this issue, the
hetero-structured catalyst NiZnCuFeAl/NiZnCuFeAlZrOx with Fd3m
symmetry was developed in 2024169. As shown in Fig. 7f, g, it exhibits
exceptional catalytic performance, achieving 100% vanillin conversion and
95% selectivity for the high-value product 2-methyl-4-methoxy phenol at
just 120 ∘C,maintaining efficiency even after five cycles. ForMgLaFeMnCu,
the exceptional catalytic performance is attributed to the abundance of
oxygen vacancies, high surface area, and synergistic effects of the numerous
metallic components166. Likewise, the NiZnCuFeAl/NiZnCuFeAlZrOx

heterostructure leverages its high-entropy oxidematrix to provide excellent
hydrogenolysis capabilities and robust electron transfer pathways. The
synergistic effects of the alloy andoxide components further ensure selective
oxygen removal, high chemoselectivity, and catalyst durability overmultiple
cycles169. These advancements underscore the transformative potential of
HEMs in sustainable biofuel production.

Challenges and future direction
One of the most promising aspects of HEMs—their compositional com-
plexity offering enhanced and emergent properties—can also be a barrier to
their discovery and optimization.

For hydrogen generation and storage, this complexitymakes it difficult
to tune stability, adsorption energies/absorption capacities, and release
kinetics simultaneously29,170. Thehigh configurational entropy that stabilizes
thesematerials can also lead to unwantedphasesor structural heterogeneity,
which may degrade performance over multiple cycles of hydrogen
absorption and desorption29,171. From a computational perspective, the
compositional complexity of HEMs also presents obstacles to their design.
For example, classical transition state theory (TST) has been immensely
helpful inmodeling catalytic processes onuniformmetal surfaces, especially
in conjunction with scaling and Brønsted-Evans-Polanyi (BEP) relations.
These frameworks quantify the Sabatier principle by linking adsorption
energies of key intermediates (such as *OHand *OOH) to reaction barriers,
making it straightforward to pinpoint “ideal” adsorption energies for high
catalytic activity. However, TST is challenging to apply to HEMs because
each surface site can have a unique local composition. In more complex
reactions—e.g., involving multiatom adsorption sites—the transition state
may interact with different surface atoms than those in the initial and final
states. Enumerating each unique configuration and reaction pathway in

Fig. 6 | High-entropy materials in thermoelectric
materials. Comparison of thermoelectric perfor-
mance zT as a function of temperature for tradi-
tional materials and HEMs. The right-side
subfigures highlight specific systems with HEMs for
better visualization. Related data are provided in
Supplemental Table S.3.
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HEMs exceeds the practical limits of TST172. In recent years, ML has
emerged as a powerful tool for this problem. ML models trained on DFT/
experimental data can capture the vast configuration spaceofHEMsurfaces,
enabling the prediction of adsorption energies and reaction barriers across a
diverse range of surface sites173. By bypassing the reliance on predefined
scaling relations like BEP, ML can directly map local atomic environments
to kinetic parameters, accounting for the unique geometries and chemistries
of individual sites on HEMs. Additionally, ML-driven approaches can
provide insights into the statistical distribution of active sites and their
catalytic performance, identifying high-probability pathways for efficient
reactions without explicitly enumerating all possible configurations174.
Despite these advancements, HEMsurfaces—having unusual compositions
and complex geometries—pose a distinct challenge for ML-based approa-
ches, which strongly rely on high-fidelity and representative training data.
Dealing with larger, more complex reaction networks while maintaining
accuracy remains computationally expensive and requires significant
algorithmic innovation.

For high-entropy batteries, further research is needed to understand
the mechanisms driving the enhanced performance. Although the prop-
erties of HEMs can be customized through the cocktail effect, the custo-
mization process is mostly random. A significant challenge is identifying
functional units and understanding the roles of individual elements. Future
studies should aim to incorporate elements with lower redox potentials,
thereby reducing lithiation voltages175. There is some debate as to whether

changing the anions can enhance the energy efficiencies175. The relationship
between voltage hysteresis and the anion properties is not yet well under-
stood, encouraging further investigation. Another challenge is the minimal
application of HEMs in industrially-relevant battery materials176. Scale-up
beyond the laboratory level is both cost-prohibitive and technically chal-
lenging; scalable synthesis methods are currently being investigated177–179.

For biofuel synthesis, HEM stability and performance can be
improved, especially following the high temperature treatment required for
biomass conversion. The synthesis process with HEMs is complex, hin-
dering scalability and industrial application. As with hydrogen generation/
storage, themulti-element compositionmakes it difficult toachieve the right
balance of catalytic activity, selectivity, and durability. Catalyst deactivation
is also a frequent issue at high temperatures, and chemical contaminants can
poison active sites or lead to coking and sintering.

A key concern for the thermal and phase stability of HEMs is that
entropy-driven stabilization, while beneficial at elevated temperatures,
may not entirely suppress phase separation and undesired transforma-
tions under extreme operating conditions. In ceramics, for instance,
additional doping and tailored composition gradients can bolster single-
phase stability180. In-operando characterization will play a vital role in
studying HEMs, revealing transient phase changes and localized segre-
gation. From the modeling side, thermodynamic integration, advanced
Monte Carlo sampling, and ML force fields offer the ability to capture
finite-temperature and kinetic effects with fewer computational

b

d c

a

e gf

Fig. 7 | Thermoelectrics and biofuels. Band structures of SnTe-based alloys:
a Sn32Te32, b (Sn16Pb16)Te32, c (Sn9Pb9Ge9)Te27, and d (Sn8Pb8Mn8Ge8)Te32

156.
e Synthesis ofC7-C17 fuel precursors via oxidative condensation reactions of furfuralwith
different aliphatic alcohols mediated by high-entropy catalyst MgLaFeMnCu166.
f Products distribution of hetero-structured high-entropy catalysts prepared at 400 ∘C
(Re400), 500∘C (Re500), and 600 ∘C (Re600) and at reaction temperatures of 120/

140 ∘C169. Products VAN is vanillin, HMP is 4-hydroxymethyl-2-methoxyphenol, and
MMP is 2-methyl-4 methoxy phenol. g Stability test of hetero-structured high-entropy
catalystRe400,measuringproductMMPyieldacross repeated reactioncycles169. (a–e) are
reproducedwith permission fromAmericanChemical Society156,166. (f, g) are reproduced
with permission fromWiley169.
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bottlenecks. Deploying these tools more systematically can reveal
compositional “safe zones” that balance enthalpic and entropic factors to
maintain solid-solution behavior.

Given the multi-element nature of HEMs, compositional tuning has
been a central focus for the field, and much remains unexplored. The next
frontier includes examination of synthesis pathways and processing para-
meters and how they also govern formation, properties, and scalability of
these systems181. New synthesis methods achieving higher effective
temperatures182 will help realize previously-inaccessible HEMswith distinct
and exotic properties35,183. HEM synthesis methods also need to be opti-
mized for industrial application, considering production cost, speed/auto-
mation, and quality. Varying processing parameters like annealing times,
heating rates, and pressure can dramatically affect the microstructure and
morphology, enabling optimization of properties that span multiple scales
like hardness and electrical/thermal conductivities175,184–188. Integrating
computational and data-driven approaches with experiments is essential to
elucidating and navigating these complex processing-structure-property
relationships. Computational-experimental feedback loops will, with each
iteration, improve the accuracy of the models and direct resources to the
most fruitful candidates. Progress in high-throughput calculations/model-
ing—already capable of predicting thermodynamic synthesizability and
functional properties—will focus on resolving manufacturability through
the prediction of formation temperatures, kinetics, surface interactions, and
material lifetime/degradation processes. Capturing these features ab initio is
essential to boosting the technology readiness level of this relatively new
class of materials.

Conclusion
A high-entropy design has proven to be transformative in the development
of green energy solutions, offering a versatile platform for advanced mate-
rials with tailored properties. The blend of elements in HEMs—which was
previously inaccessible for some chemistries—allows for unprecedented
control over material behavior, leading to enhancements in performance
above and beyond the state-of-the-art across various energy
technologies85,153–157,159,160,189–342. However, challenges remain, particularly in
deconvolving the disorder-driven dynamics within HEMs that would
enable systematic design and optimization for each specific application. The
complexity of the search space and of the interactionswithinHEMs calls for
more advanced computational tools that can uncover the underlying
mechanisms and guide the design/discovery of even better performing
HEMs. A critical next step is deploying multi-scale modeling approaches,
combiningDFT for accurate local electronic structures, generatingML force
fields for large-scale simulations, performing Monte Carlo for sampling
accessible configurations, and constructing thermodynamic databases
focused on HEMs. High-throughput frameworks and ML/AI-based
screening can accelerate the discovery of new compositions with targeted
properties. Kinetic modeling beyond standard TST—accounting for local
site disorder—can reveal reaction pathways that are otherwise unavailable
on uniformmetal surfaces. On the synthesis side, upcoming methods must
reconcile scalability, cost-effectiveness, and quality control to bridge the gap
between laboratory-scale development and industrial production. Techni-
ques that achieve higher effective temperatures (e.g., laser-assisted sintering
andplasma-basedprocesses) canunlock previously inaccessible phaseswith
unique and advanced functionalities. Microwave plasma chemical vapor
deposition, arc melting, and mechanical alloying—extended to near- or
super-equiatomic conditions—are among the promising routes for rapid,
large-scale fabrication. Careful control over annealing and cooling rates can
fine-tune themicrostructure, promoting homogeneous single-phase HEMs
and multiphase architectures with well-controlled interfaces. Integrated
computational-experimental feedback loops343—where virtualmaterials are
experimentally validated and experimental data refines predictivemodels—
offer a powerful engine to streamline research toward industry-ready
HEMs. Disorder-by-design will continue to lead the charge toward a more
sustainable, green-energy-powered future.
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