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Machine learning modeling of superconducting critical
temperature
Valentin Stanev1,2, Corey Oses 3,4, A. Gilad Kusne1,5, Efrain Rodriguez2,6, Johnpierre Paglione2,7, Stefano Curtarolo3,4,8 and
Ichiro Takeuchi1,2

Superconductivity has been the focus of enormous research effort since its discovery more than a century ago. Yet, some features
of this unique phenomenon remain poorly understood; prime among these is the connection between superconductivity and
chemical/structural properties of materials. To bridge the gap, several machine learning schemes are developed herein to model
the critical temperatures (Tc) of the 12,000+ known superconductors available via the SuperCon database. Materials are first divided
into two classes based on their Tc values, above and below 10 K, and a classification model predicting this label is trained. The
model uses coarse-grained features based only on the chemical compositions. It shows strong predictive power, with out-of-sample
accuracy of about 92%. Separate regression models are developed to predict the values of Tc for cuprate, iron-based, and low-Tc
compounds. These models also demonstrate good performance, with learned predictors offering potential insights into the
mechanisms behind superconductivity in different families of materials. To improve the accuracy and interpretability of these
models, new features are incorporated using materials data from the AFLOW Online Repositories. Finally, the classification and
regression models are combined into a single-integrated pipeline and employed to search the entire Inorganic Crystallographic
Structure Database (ICSD) for potential new superconductors. We identify >30 non-cuprate and non-iron-based oxides as candidate
materials.
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INTRODUCTION
Superconductivity, despite being the subject of intense physics,
chemistry, and materials science research for more than a century,
remains among one of the most puzzling scientific topics.1 It is an
intrinsically quantum phenomenon caused by a finite attraction
between paired electrons, with unique properties including zero
DC resistivity, Meissner, and Josephson effects, and with an ever-
growing list of current and potential applications. There is even a
profound connection between phenomena in the superconduct-
ing state and the Higgs mechanism in particle physics.2 However,
understanding the relationship between superconductivity and
materials’ chemistry and structure presents significant theoretical
and experimental challenges. In particular, despite focused
research efforts in the last 30 years, the mechanisms responsible
for high-temperature superconductivity in cuprate and iron-based
families remain elusive.3,4

Recent developments, however, allow a different approach to
investigate what ultimately determines the superconducting
critical temperatures (Tc) of materials. Extensive databases cover-
ing various measured and calculated materials properties have
been created over the years.5–9 The sheer quantity of accessible
information also makes possible, and even necessary, the use of
data-driven approaches, e.g., statistical and machine learning (ML)
methods.10–13 Such algorithms can be developed/trained on the
variables collected in these databases, and employed to predict

macroscopic properties, such as the melting temperatures of
binary compounds,14 the likely crystal structure at a given
composition,15 band gap energies16,17, and density of states16 of
certain classes of materials.
Taking advantage of this immense increase of readily accessible

and potentially relevant information, we develop several ML
methods modeling Tc from the complete list of reported
(inorganic) superconductors.18 In their simplest form, these
methods take as input a number of predictors generated from
the elemental composition of each material. Models developed
with these basic features are surprisingly accurate, despite lacking
information of relevant properties, such as space group, electronic
structure, and phonon energies. To further improve the predictive
power of the models, as well as the ability to extract useful
information out of them, another set of features are constructed
based on crystallographic and electronic information taken from
the AFLOW Online Repositories.19–22

Application of statistical methods in the context of super-
conductivity began in the early eighties with simple clustering
methods.23,24 In particular, three “golden” descriptors confine the
60 known (at the time) superconductors with Tc > 10 K to three
small islands in space: the averaged valence-electron numbers,
orbital radii differences, and metallic electronegativity differences.
Conversely, about 600 other superconductors with Tc < 10 K
appear randomly dispersed in the same space. These descriptors
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were selected heuristically due to their success in classifying
binary/ternary structures and predicting stable/metastable ternary
quasicrystals. Recently, an investigation stumbled on this cluster-
ing problem again by observing a threshold Tc closer to
log T thresc

� � � 1:3 T thres
c ¼ 20K

� �
.25 Instead of a heuristic approach,

random forests and simplex fragments were leveraged on the
structural/electronic properties data from the AFLOW Online
Repositories to find the optimum clustering descriptors. A
classification model was developed showing good performance.
Separately, a sequential learning framework was evaluated on
superconducting materials, exposing the limitations of relying on
random-guess (trial-and-error) approaches for breakthrough dis-
coveries.26 Subsequently, this study also highlights the impact
machine learning can have on this particular field. In another early
work, statistical methods were used to find correlations between
normal state properties and Tc of the metallic elements in the first
six rows of the periodic table.27 Other contemporary works hone
in on specific materials28,29 and families of superconductors30,31

(see also ref. 32).
Whereas previous investigations explored several hundred

compounds at most, this work considers >16,000 different
compositions. These are extracted from the SuperCon database,
which contains an exhaustive list of superconductors, including
many closely related materials varying only by small changes in
stoichiometry (doping plays a significant role in optimizing Tc). The
order-of-magnitude increase in training data (i) presents crucial
subtleties in chemical composition among related compounds, (ii)
affords family-specific modeling exposing different superconduct-
ing mechanisms, and (iii) enhances model performance overall. It
also enables the optimization of several model construction
procedures. Large sets of independent variables can be con-
structed and rigorously filtered by predictive power (rather than
selecting them by intuition alone). These advances are crucial to
uncovering insights into the emergence/suppression of super-
conductivity with composition.
As a demonstration of the potential of ML methods in looking

for novel superconductors, we combined and applied several
models to search for candidates among the roughly 110,000
different compositions contained in the Inorganic Crystallographic
Structure Database (ICSD), a large fraction of which have not been
tested for superconductivity. The framework highlights 35
compounds with predicted Tc’s above 20 K for experimental
validation. Of these, some exhibit interesting chemical and
structural similarities to cuprate superconductors, demonstrating
the ability of the ML models to identify meaningful patterns in the
data. In addition, most materials from the list share a peculiar
feature in their electronic band structure: one (or more) flat/nearly-
flat bands just below the energy of the highest occupied
electronic state. The associated large peak in the density of states
(infinitely large in the limit of truly flat bands) can lead to strong
electronic instability, and has been discussed recently as one
possible way to high-temperature superconductivity.33,34

RESULTS
Data and predictors
The success of any ML method ultimately depends on access to
reliable and plentiful data. Superconductivity data used in this
work is extracted from the SuperCon database,18 created and
maintained by the Japanese National Institute for Materials
Science. It houses information such as the Tc and reporting
journal publication for superconducting materials known from
experiment. Assembled within it is a uniquely exhaustive list of all
reported superconductors, as well as related non-superconducting
compounds. As such, SuperCon is the largest database of its kind,
and has never before been employed en masse for machine
learning modeling.

From SuperCon, we have extracted a list of ~16,400
compounds, of which 4000 have no Tc reported (see Methods
section for details). Of these, roughly 5700 compounds are
cuprates and 1500 are iron-based (about 35 and 9%, respectively),
reflecting the significant research efforts invested in these two
families. The remaining set of about 8000 is a mix of various
materials, including conventional phonon-driven superconductors
(e.g., elemental superconductors, A15 compounds), known
unconventional superconductors like the layered nitrides and
heavy fermions, and many materials for which the mechanism of
superconductivity is still under debate (such as bismuthates and
borocarbides). The distribution of materials by Tc for the three
groups is shown in Fig. 2a.
Use of this data for the purpose of creating ML models can be

problematic. ML models have an intrinsic applicability domain, i.e.,
predictions are limited to the patterns/trends encountered in the
training set. As such, training a model only on superconductors
can lead to significant selection bias that may render it ineffective
when applied to new materials (N.B., a model suffering from
selection bias can still provide valuable statistical information
about known superconductors). Even if the model learns to
correctly recognize factors promoting superconductivity, it may
miss effects that strongly inhibit it. To mitigate the effect, we
incorporate about 300 materials found by H. Hosono’s group not
to display superconductivity.35 However, the presence of non-
superconducting materials, along with those without Tc reported
in SuperCon, leads to a conceptual problem. Surely, some of these
compounds emerge as non-superconducting “end-members”
from doping/pressure studies, indicating no superconducting
transition was observed despite some efforts to find one.
However, since transition may still exist, albeit at experimentally
difficult to reach or altogether inaccessible temperatures - for
most practical purposes below 10mK. (There are theoretical
arguments for this—according to the Kohn–Luttinger theorem, a
superconducting instability should be present as T→ 0 in any
fermionic metallic system with Coulomb interactions.36) This
presents a conundrum: ignoring compounds with no reported Tc
disregards a potentially important part of the dataset, while
assuming Tc= 0 K prescribes an inadequate description for (at
least some of) these compounds. To circumvent the problem,
materials are first partitioned in two groups by their Tc, above and
below a threshold temperature (Tsep), for the creation of a
classification model. Compounds with no reported critical
temperature can be classified in the “below-Tsep” group without
the need to specify a Tc value (or assume it is zero). The “above-
Tsep” bin also enables the development of a regression model for
ln(Tc), without problems arising in the Tc→ 0 limit.
For most materials, the SuperCon database provides only the

chemical composition and Tc. To convert this information into
meaningful features/predictors (used interchangeably), we
employ the Materials Agnostic Platform for Informatics and
Exploration (Magpie).37 Magpie computes a set of attributes for
each material, including elemental property statistics like the
mean and the standard deviation of 22 different elemental
properties (e.g., period/group on the periodic table, atomic
number, atomic radii, melting temperature), as well as electronic
structure attributes, such as the average fraction of electrons from
the s, p, d, and f valence shells among all elements present.
The application of Magpie predictors, though appearing to lack

a priori justification, expands upon past clustering approaches by
Villars and Rabe.23,24 They show that, in the space of a few
judiciously chosen heuristic predictors, materials separate and
cluster according to their crystal structure and even complex
properties, such as high-temperature ferroelectricity and super-
conductivity. Similar to these features, Magpie predictors capture
significant chemical information, which plays a decisive role in
determining structural and physical properties of materials.
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Despite the success of Magpie predictors in modeling materials
properties,37 interpreting their connection to superconductivity
presents a serious challenge. They do not encode (at least directly)
many important properties, particularly those pertinent to super-
conductivity. Incorporating features like lattice type and density of
states would undoubtedly lead to significantly more powerful and
interpretable models. Since such information is not generally
available in SuperCon, we employ data from the AFLOW Online
Repositories.19–22 The materials database houses nearly 170
million properties calculated with the software package
AFLOW.6,38–46 It contains information for the vast majority of
compounds in the ICSD.5 Although, the AFLOW Online Reposi-
tories contain calculated properties, the DFT results have been
extensively validated with observed properties.17,25,47–50

Unfortunately, only a small subset of materials in SuperCon
overlaps with those in the ICSD: about 800 with finite Tc and <600
are contained within AFLOW. For these, a set of 26 predictors are
incorporated from the AFLOW Online Repositories, including
structural/chemical information like the lattice type, space group,
volume of the unit cell, density, ratios of the lattice parameters,
Bader charges and volumes, and formation energy (see Methods
section for details). In addition, electronic properties are con-
sidered, including the density of states near the Fermi level as
calculated by AFLOW. Previous investigations exposed limitations
in applying ML methods to a similar dataset in isolation.25 Instead,
a framework is presented here for combining models built on
Magpie descriptors (large sampling, but features limited to
compositional data) and AFLOW features (small sampling, but
diverse and pertinent features).
Once we have a list of relevant predictors, various ML models

can be applied to the data.51,52 All ML algorithms in this work are
variants of the random forest method.53 Fundamentally, this
approach combines many individual decision trees, where each
tree is a non-parametric supervised learning method used for
modeling either categorical or numerical variables (i.e., classifica-
tion or regression modeling). A tree predicts the value of a target
variable by learning simple decision rules inferred from the
available features (see Fig. 1 for an example).
Random forest is one of the most powerful, versatile, and widely

used ML methods.54 There are several advantages that make it
especially suitable for this problem. First, it can learn complicated
non-linear dependencies from the data. Unlike many other

methods (e.g., linear regression), it does not make assumptions
about the functional form of the relationship between the
predictors and the target variable (e.g., linear, exponential or
some other a priori fixed function). Second, random forests are
quite tolerant to heterogeneity in the training data. It can handle
both numerical and categorical data which, furthermore, does not
need extensive and potentially dangerous preprocessing, such as
scaling or normalization. Even the presence of strongly correlated
predictors is not a problem for model construction (unlike many
other ML algorithms). Another significant advantage of this
method is that, by combining information from individual trees,
it can estimate the importance of each predictor, thus making the
model more interpretable. However, unlike model construction,
determination of predictor importance is complicated by the
presence of correlated features. To avoid this, standard feature
selection procedures are employed along with a rigorous
predictor elimination scheme (based on their strength and
correlation with others). Overall, these methods reduce the
complexity of the models and improve our ability to interpret
them.

Classification models
As a first step in applying ML methods to the dataset, a sequence
of classification models are created, each designed to separate
materials into two distinct groups depending on whether Tc is
above or below some predetermined value. The temperature that
separates the two groups (Tsep) is treated as an adjustable
parameter of the model, though some physical considerations
should guide its choice as well. Classification ultimately allows
compounds with no reported Tc to be used in the training set by
including them in the below-Tsep bin. Although discretizing
continuous variables is not generally recommended, in this case
the benefits of including compounds without Tc outweigh the
potential information loss.
In order to choose the optimal value of Tsep, a series of random

forest models are trained with different threshold temperatures
separating the two classes. Since setting Tsep too low or too high
creates strongly imbalanced classes (with many more instances in
one group), it is important to compare the models using several
different metrics. Focusing only on the accuracy (count of
correctly classified instances) can lead to deceptive results.

Fig. 1 Schematic of the random forest ML approach. Example of a single decision tree used to classify materials depending on whether Tc is
above or below 10 K. A tree can have many levels, but only the three top are shown. The decision rules leading to each subset are written
inside individual rectangles. The subset population percentage is given by “samples”, and the node color/shade represents the degree of
separation, i.e., dark blue/orange illustrates a high proportion of Tc > 10 K/Tc < 10 K materials (the exact value is given by “proportion”). A
random forest consists of a large number—could be hundreds or thousands—of such individual trees
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Hypothetically, if 95% of the observations in the dataset are in the
below-Tsep group, simply classifying all materials as such would
yield a high accuracy (95%), while being trivial in any other sense.
There are more sophisticated techniques to deal with severely
imbalanced datasets, like undersampling the majority class or
generating synthetic data points for the minority class (see, for
example, ref. 55). To avoid this potential pitfall, three other
standard metrics for classification are considered: precision, recall,
and F1 score. They are defined using the values tp, tn, fp, and fn for
the count of true/false positive/negative predictions of the model:

accuracy � tpþ tn
tpþ tnþ fpþ fn

; (1)

precision � tp
tpþ fp

; (2)

recall � tp
tpþ fn

; (3)

F1 � 2 ´
precision ´ recall
precisionþ recall

; (4)

where positive/negative refers to above-Tsep/below-Tsep. The
accuracy of a classifier is the total proportion of correctly classified
materials, while precision measures the proportion of correctly
classified above-Tsep superconductors out of all predicted above-
Tsep. The recall is the proportion of correctly classified above-Tsep
materials out of all truly above-Tsep compounds. While the
precision measures the probability that a material selected by
the model actually has Tc > Tsep, the recall reports how sensitive
the model is to above-Tsep materials. Maximizing the precision or
recall would require some compromise with the other, i.e., a
model that labels all materials as above-Tsep would have perfect
recall but dismal precision. To quantify the trade-off between
recall and precision, their harmonic mean (F1 score) is widely used
to measure the performance of a classification model. With the
exception of accuracy, these metrics are not symmetric with
respect to the exchange of positive and negative labels.
For a realistic estimate of the performance of each model, the

dataset is randomly split (85%/15%) into training and test subsets.
The training set is employed to fit the model, which is then
applied to the test set for subsequent benchmarking. The
aforementioned metrics (Eqs. (1)–(4)) calculated on the test set
provide an unbiased estimate of how well the model is expected
to generalize to a new (but similar) dataset. With the random
forest method, similar estimates can be obtained intrinsically at
the training stage. Since each tree is trained only on a
bootstrapped subset of the data, the remaining subset can be
used as an internal test set. These two methods for quantifying
model performance usually yield very similar results.
With the procedure in place, the models’ metrics are evaluated

for a range of Tsep and illustrated in Fig. 2b. The accuracy increases
as Tsep goes from 1 to 40 K, and the proportion of above-Tsep
compounds drops from above 70% to about 15%, while the recall
and F1 score generally decrease. The region between 5 and 15 K is
especially appealing in (nearly) maximizing all benchmarking
metrics while balancing the sizes of the bins. In fact, setting Tsep=
10 K is a particularly convenient choice. It is also the temperature
used in refs. 23,24 to separate the two classes, as it is just above the
highest Tc of all elements and pseudoelemental materials (solid
solution whose range of composition includes a pure element).
Here, the proportion of above-Tsep materials is ~38% and the
accuracy is about 92%, i.e., the model can correctly classify nine
out of ten materials—much better than random guessing. The
recall—quantifying how well all above-Tsep compounds are
labeled and, thus, the most important metric when searching
for new superconducting materials—is even higher. (Note that the
models’ metrics also depend on random factors such as the

composition of the training and test sets, and their exact values
can vary.)
The most important factors that determine the model’s

performance are the size of the available dataset and the number
of meaningful predictors. As can be seen in Fig. 2c, all metrics
improve significantly with the increase of the training set size. The
effect is most dramatic for sizes between several hundred and few
thousands instances, but there is no obvious saturation even for
the largest available datasets. This validates efforts herein to
incorporate as much relevant data as possible into model training.
The number of predictors is another very important model
parameter. In Fig. 2d, the accuracy is calculated at each step of the
backward feature elimination process. It quickly saturates when
the number of predictors reaches 10. In fact, a model using only
the five most informative predictors, selected out of the full list of
145 ones, achieves almost 90% accuracy.
To gain some understanding of what the model has learned, an

analysis of the chosen predictors is needed. In the random forest
method, features can be ordered by their importance quantified
via the so-called Gini importance or “mean decrease in
impurity”.51,52 For a given feature, it is the sum of the Gini
impurity (calculated as ∑i pi(1 - pi), where pi is the probability of
randomly chosen data point from a given decision tree leaf to be
in class i51,52) over the number of splits that include the feature,
weighted by the number of samples it splits, and averaged over
the entire forest. Due to the nature of the algorithm, the closer to
the top of the tree a predictor is used, the greater number of
predictions it impacts.
Although correlations between predictors do not affect the

model’s ability to learn, it can distort importance estimates. For
example, a material property with a strong effect on Tc can be
shared among several correlated predictors. Since the model can
access the same information through any of these variables, their
relative importances are diluted across the group. To reduce the
effect and limit the list of predictors to a manageable size, the
backward feature elimination method is employed. The process
begins with a model constructed with the full list of predictors,
and iteratively removes the least significant one, rebuilding the
model and recalculating importances with every iteration. (This
iterative procedure is necessary since the ordering of the
predictors by importance can change at each step.) Predictors
are removed until the overall accuracy of the model drops by 2%,
at which point there are only five left. Furthermore, two of these
predictors are strongly correlated with each other, and we remove
the less important one. This has a negligible impact on the model
performance, yielding four predictors total (see Table 1) with an
above 90% accuracy score—only slightly worse than the full
model. Scatter plots of the pairs of the most important predictors
are shown in Fig. 3, where blue/red denotes whether the material
is in the below-Tsep/above-Tsep class. Figure 3a shows a scatter plot
of 3000 compounds in the space spanned by the standard
deviations of the column numbers and electronegativities
calculated over the elemental values. Superconductors with Tc >
10 K tend to cluster in the upper-right corner of the plot and in a
relatively thin elongated region extending to the left of it. In fact,
the points in the upper-right corner represent mostly cuprate
materials, which with their complicated compositions and large
number of elements are likely to have high-standard deviations in
these variables. Figure 3b shows the same compounds projected
in the space of the standard deviations of the melting
temperatures and the averages of the atomic weights of the
elements forming each compound. The above-Tsep materials tend
to cluster in areas with lower mean atomic weights—not a
surprising result given the role of phonons in conventional
superconductivity.
For comparison, we create another classifier based on the

average number of valence electrons, metallic electronegativity
differences, and orbital radii differences, i.e., the predictors used in
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refs. 23,24 to cluster materials with Tc > 10 K. A classifier built only
with these three predictors is less accurate than both the full and
the truncated models presented herein, but comes quite close: the
full model has about 3% higher accuracy and F1 score, while the
truncated model with four predictors is less that 2% more
accurate. The rather small (albeit not insignificant) differences
demonstrates that even on the scale of the entire SuperCon
dataset, the predictors used by Villars and Rabe23,24 capture much
of the relevant chemical information for superconductivity.

Regression models
After constructing a successful classification model, we now move
to the more difficult challenge of predicting Tc. Creating a
regression model may enable better understanding of the factors
controlling Tc of known superconductors, while also serving as an
organic part of a system for identifying potential new ones.
Leveraging the same set of elemental predictors as the classifica-
tion model, several regression models are presented focusing on
materials with Tc > 10 K. This approach avoids the problem of
materials with no reported Tc with the assumption that, if they
were to exhibit superconductivity at all, their critical temperature
would be below 10 K. It also enables the substitution of Tc with ln

Table 1. The most relevant predictors and their importances for the
classification and general regression models

Predictor
rank

Model

Classification Regression (general; Tc > 10 K)

1 std(column number)
0.26

avg(number of unfilled orbitals)
0.26

2 std(electronegativity)
0.26

std(ground state volume) 0.18

3 std(melting
temperature) 0.23

std(space group number) 0.17

4 avg(atomic weight) 0.24 avg(number of d unfilled
orbitals) 0.17

5 — std(number of d valence
electrons) 0.12

6 — avg(melting temperature) 0.10

avg(x) and std(x) denote the composition-weighted average and standard
deviation, respectively, calculated over the vector of elemental values for
each compound.37 For the classification model, all predictor importances
are quite close

a b

c d

Fig. 2 SuperCon dataset and classification model performance. a Histogram of materials categorized by Tc (bin size is 2 K, only those with
finite Tc are counted). Blue, green, and red denote low-Tc, iron-based, and cuprate superconductors, respectively. In the inset: histogram of
materials categorized by ln(Tc) restricted to those with Tc > 10 K. b Performance of different classification models as a function of the threshold
temperature (Tsep) that separates materials in two classes by Tc. Performance is measured by accuracy (gray), precision (red), recall (blue), and
F1 score (purple). The scores are calculated from predictions on an independent test set, i.e., one separate from the dataset used to train the
model. In the inset: the dashed red curve gives the proportion of materials in the above-Tsep set. c Accuracy, precision, recall, and F1 score as a
function of the size of the training set with a fixed test set. d Accuracy, precision, recall, and F1 as a function of the number of predictors
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(Tc) as the target variable (which is problematic as Tc→ 0), and
thus addresses the problem of the uneven distribution of
materials along the Tc-axis (Fig. 2a). Using ln(Tc) creates a more
uniform distribution (Fig. 2a inset), and is also considered a best
practice when the range of a target variable covers more than one
order-of-magnitude (as in the case of Tc). Following this
transformation, the dataset is parsed randomly (85%/15%) into
training and test subsets (similarly performed for the classification
model).
Present within the dataset are distinct families of super-

conductors with different driving mechanisms for superconduc-
tivity, including cuprate and iron-based high-temperature
superconductors, with all others denoted “low-Tc” for brevity (no
specific mechanism in this group). Surprisingly, a single-regression

model does reasonably well among the different
families–benchmarked on the test set, the model achieves R2 ≈
0.88 (Fig. 4a). It suggests that the random forest algorithm is
flexible and powerful enough to automatically separate the
compounds into groups and create group-specific branches with
distinct predictors (no explicit group labels were used during
training and testing). As validation, three separate models are
trained only on a specific family, namely the low-Tc, cuprate, and
iron-based superconductors, respectively. Benchmarking on
mixed-family test sets, the models performed well on compounds
belonging to their training set family while demonstrating no
predictive power on the others. Figure 4b–d illustrates a cross-
section of this comparison. Specifically, the model trained on low-
Tc compounds dramatically underestimates the Tc of both high-

a b

Fig. 3 Scatter plots of 3000 superconductors in the space of the four most important classification predictors. Blue/red represent below-Tsep/
above-Tsep materials, where Tsep= 10 K. a Feature space of the first and second most important predictors: standard deviations of the column
numbers and electronegativities (calculated over the values for the constituent elements in each compound). b Feature space of the third and
fourth most important predictors: standard deviation of the elemental melting temperatures and average of the atomic weights

a b c

d e

Fig. 4 Benchmarking of regression models predicting ln(Tc). a Predicted vs. measured ln(Tc) for the general regression model. The test set
comprising a mix of low-Tc, iron-based, and cuprate superconductors with Tc > 10 K. With an R2 of about 0.88, this one model can accurately
predict Tc for materials in different superconducting groups. b, c Predictions of the regression model trained solely on low-Tc compounds for
test sets containing cuprate and iron-based materials. d, e Predictions of the regression model trained solely on cuprates for test sets
containing low-Tc and iron-based superconductors. Models trained on a single group have no predictive power for materials from other
groups
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temperature superconducting families (Fig. 4b, c), even though
this test set only contains compounds with Tc < 40 K. Conversely,
the model trained on the cuprates tends to overestimate the Tc of
low-Tc (Fig. 4d) and iron-based (Fig. 4e) superconductors. This is a
clear indication that superconductors from these groups have
different factors determining their Tc. Interestingly, the family-
specific models do not perform better than the general regression
containing all the data points: R2 for the low-Tc materials is about
0.85, for cuprates is just below 0.8, and for iron-based compounds
is about 0.74. In fact, it is a purely geometric effect that the
combined model has the highest R2. Each group of super-
conductors contributes mostly to a distinct Tc range, and, as a
result, the combined regression is better determined over longer
temperature interval.
In order to reduce the number of predictors and increase the

interpretability of these models without significant detriment to
their performance, a backward feature elimination process is again
employed. The procedure is very similar to the one described
previously for the classification model, with the only difference
being that the reduction is guided by R2 of the model, rather than
the accuracy (the procedure stops when R2 drops by 3%).
The most important predictors for the four models (one general

and three family-specific) together with their importances are
shown in Tables 1 and 2. Differences in important predictors
across the family-specific models reflect the fact that distinct
mechanisms are responsible for driving superconductivity among
these groups. The list is longest for the low-Tc superconductors,
reflecting the eclectic nature of this group. Similar to the general
regression model, different branches are likely created for distinct
sub-groups. Nevertheless, some important predictors have
straightforward interpretation. As illustrated in Fig. 5a, low average
atomic weight is a necessary (albeit not sufficient) condition for
achieving high Tc among the low-Tc group. In fact, the maximum
Tc for a given weight roughly follows 1=

ffiffiffiffiffiffiffi
mA

p
. Mass plays a

significant role in conventional superconductors through the
Debye frequency of phonons, leading to the well-known formula
Tc � 1=

ffiffiffiffi
m

p
, where m is the ionic mass (see, for example, refs. 56–

58). Other factors like density of states are also important, which
explains the spread in Tc for a given mA. Outlier materials clearly
above the � 1=

ffiffiffiffiffiffiffi
mA

p
line include bismuthates and chloronitrates,

suggesting the conventional electron-phonon mechanism is not
driving superconductivity in these materials. Indeed, chloroni-
trates exhibit a very weak isotope effect,59 though some
unconventional electron-phonon coupling could still be relevant
for superconductivity.60 Another important feature for low-Tc
materials is the average number of valence electrons. This

recovers the empirical relation first discovered by Matthias more
than 60 years ago.61 Such findings validate the ability of ML
approaches to discover meaningful patterns that encode true
physical phenomena.
Similar Tc-vs.-predictor plots reveal more interesting and subtle

features. A narrow cluster of materials with Tc > 20 K emerges in
the context of the mean covalent radii of compounds (Fig. 5b)—
another important predictor for low-Tc superconductors. The
cluster includes (left-to-right) alkali-doped C60, MgB2-related
compounds, and bismuthates. The sector likely characterizes a
region of strong covalent bonding and corresponding high-
frequency phonon modes that enhance Tc (however, frequencies
that are too high become irrelevant for superconductivity). Another
interesting relation appears in the context of the average number
of d valence electrons. Figure 5c illustrates a fundamental bound
on Tc of all non-cuprate and non-iron-based superconductors.
A similar limit exists for cuprates based on the average number

of unfilled orbitals (Fig. 5d). It appears to be quite rigid—several
data points found above it on inspection are actually incorrectly
recorded entries in the database and were subsequently removed.
The connection between Tc and the average number of unfilled
orbitals may offer new insight into the mechanism for super-
conductivity in this family. (The number of unfilled orbitals refers
to the electron configuration of the substituent elements before
combining to form oxides. For example, Cu has one unfilled orbital
([Ar]4s23d9) and Bi has three ([Xe]4f146s25d106p3). These values are
averaged per formula unit.) Known trends include higher Tc’s for
structures that (i) stabilize more than one superconducting Cu–O
plane per unit cell and (ii) add more polarizable cations such as Tl3
+ and Hg2+ between these planes. The connection reflects these
observations, since more copper and oxygen per formula unit
leads to lower average number of unfilled orbitals (one for copper,
two for oxygen). Further, the lower-Tc cuprates typically consist of
Cu2−/Cu3−-containing layers stabilized by the addition/substition
of hard cations, such as Ba2+ and La3+, respectively. These cations
have a large number of unfilled orbitals, thus increasing the
compound’s average. Therefore, the ability of between-sheet
cations to contribute charge to the Cu–O planes may be indeed
quite important. The more polarizable the A cation, the more
electron density it can contribute to the already strongly covalent
Cu2+–O bond.

Including AFLOW
The models described previously demonstrate surprising accuracy
and predictive power, especially considering the difference

Table 2. The most significant predictors and their importances for the three material-specific regression models

Predictor rank Model

Regression (low-Tc) Regression (cuprates) Regression (Fe-based)

1 frac(d valence electrons) 0.18 avg(number of unfilled orbitals) 0.22 std(column number) 0.17

2 avg(number of d unfilled orbitals) 0.14 std(number of d valence electrons) 0.13 avg(ionic character) 0.15

3 avg(number of valence electrons) 0.13 frac(d valence electrons) 0.13 std(Mendeleev number) 0.14

4 frac(s valence electrons) 0.11 std(ground state volume) 0.13 std(covalent radius) 0.14

5 avg(number of d valence electrons) 0.09 std(number of valence electrons) 0.1 max(melting temperature) 0.14

6 avg(covalent radius) 0.09 std(row number) 0.08 avg(Mendeleev number) 0.14

7 avg(atomic weight) 0.08 ||composition||2 0.07 ||composition||2 0.11

8 avg(Mendeleev number) 0.07 std(number of s valence electrons) 0.07 —

9 avg(space group number) 0.07 std(melting temperature) 0.07 —

10 avg(number of unfilled orbitals) 0.06 — —

avg(x), std(x), max(x), and frac(x) denote the composition-weighted average, standard deviation, maximum, and fraction, respectively, taken over the elemental
values for each compound. l2-norm of a composition is calculated by xk k2¼

ffiffiffiffiffiffiffiffiffiffiffiffiP
i x

2
i

p
, where xi is the proportion of each element i in the compound
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between the relevant energy scales of most Magpie predictors
(typically in the range of eV) and superconductivity (meV scale).
This disparity, however, hinders the interpretability of the models,
i.e., the ability to extract meaningful physical correlations. Thus, it
is highly desirable to create accurate ML models with features
based on measurable macroscopic properties of the actual
compounds (e.g., crystallographic and electronic properties) rather
than composite elemental predictors. Unfortunately, only a small
subset of materials in SuperCon is also included in the ICSD: about
1500 compounds in total, only about 800 with finite Tc, and even
fewer are characterized with ab initio calculations. (Most of the
superconductors in ICSD but not in AFLOW are non-stoichio-
metric/doped compounds, and thus not amenable to conven-
tional DFT methods. For the others, AFLOW calculations were
attempted but did not converge to a reasonable solution.) In fact,
a good portion of known superconductors are disordered (off-
stoichiometric) materials and notoriously challenging to address
with DFT calculations. Currently, much faster and efficient
methods are becoming available39 for future applications.
To extract suitable features, data are incorporated from the

AFLOW Online Repositories—a database of DFT calculations
managed by the software package AFLOW. It contains information
for the vast majority of compounds in the ICSD and about
550 superconducting materials. In ref. 25, several ML models using
a similar set of materials are presented. Though a classifier shows
good accuracy, attempts to create a regression model for Tc led to
disappointing results. We verify that using Magpie predictors for

the superconducting compounds in the ICSD also yields an
unsatisfactory regression model. The issue is not the lack of
compounds per se, as models created with randomly drawn
subsets from SuperCon with similar counts of compounds perform
much better. In fact, the problem is the chemical sparsity of
superconductors in the ICSD, i.e., the dearth of closely related
compounds (usually created by chemical substitution). This
translates to compound scatter in predictor space—a challenging
learning environment for the model.
The chemical sparsity in ICSD superconductors is a significant

hurdle, even when both sets of predictors (i.e., Magpie and AFLOW
features) are combined via feature fusion. Additionally, this
approach neglects the majority of the 16,000 compounds
available via SuperCon. Instead, we constructed separate models
employing Magpie and AFLOW features, and then judiciously
combined the results to improve model metrics—known as late or
decision-level fusion. Specifically, two independent classification
models are developed, one using the full SuperCon dataset and
Magpie predictors, and another based on superconductors in the
ICSD and AFLOW predictors. Such an approach can improve the
recall, for example, in the case where we classify “high-Tc”
superconductors as those predicted by either model to be above-
Tsep. Indeed, this is the case here where, separately, the models
obtain a recall of 40 and 66%, respectively, and together achieve a
recall of about 76%. (These numbers are based on a relatively
small test set benchmarking and their uncertainty is roughly 3%.)
In this way, the models’ predictions complement each other in a

Fig. 5 Scatter plots of Tc for superconducting materials in the space of significant, family-specific regression predictors. For 4000 “low-Tc”
superconductors (i.e., non-cuprate and non-iron-based), Tc is plotted vs. the a average atomic weight, b average covalent radius, and c average
number of d valence electrons. The dashed red line in a is � 1=

ffiffiffiffiffiffiffi
mA

p
. Having low average atomic weight and low average number of d valence

electrons are necessary (but not sufficient) conditions for achieving high Tc in this group. d Scatter plot of Tc for all known superconducting
cuprates vs. the mean number of unfilled orbitals. c, d suggest that the values of these predictors lead to hard limits on the maximum
achievable Tc
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constructive way such that above-Tsep materials missed by one
model (but not the other) are now accurately classified.

Searching for new superconductors in the ICSD
As a final proof of concept demonstration, the classification and
regression models described previously are integrated in one
pipeline and employed to screen the entire ICSD database for
candidate “high-Tc” superconductors. (Note that “high-Tc” is a
label, the precise meaning of which can be adjusted.) Similar tools
power high-throughput screening workflows for materials with
desired thermal conductivity and magnetocaloric properties.50,62

As a first step, the full set of Magpie predictors are generated for
all compounds in ICSD. A classification model similar to the one
presented above is constructed, but trained only on materials in
SuperCon and not in the ICSD (used as an independent test set).
The model is then applied on the ICSD set to create a list of
materials predicted to have Tc above 10 K. Opportunities for
model benchmarking are limited to those materials both in the
SuperCon and ICSD datasets, though this test set is shown to be
problematic. The set includes about 1500 compounds, with Tc
reported for only about half of them. The model achieves an
impressive accuracy of 0.98, which is overshadowed by the fact
that 96.6% of these compounds belong to the Tc < 10 K class. The
precision, recall, and F1 scores are about 0.74, 0.66, and 0.70,
respectively. These metrics are lower than the estimates calculated
for the general classification model, which is expected given that
this set cannot be considered randomly selected. Nevertheless,
the performance suggests a good opportunity to identify new
candidate superconductors.
Next in the pipeline, the list is fed into a random forest

regression model (trained on the entire SuperCon database) to
predict Tc. Filtering on the materials with Tc > 20 K, the list is
further reduced to about 2000 compounds. This count may
appear daunting, but should be compared with the total number
of compounds in the database—about 110,000. Thus, the method
selects <2% of all materials, which in the context of the training
set (containing >20% with “high-Tc”), suggests that the model is
not overly biased toward predicting high-critical temperatures.
The vast majority of the compounds identified as candidate

superconductors are cuprates, or at least compounds that contain
copper and oxygen. There are also some materials clearly related
to the iron-based superconductors. The remaining set has 35
members, and is composed of materials that are not obviously
connected to any high-temperature superconducting families (see
Table 3). (For at least one compound from the list—Na3Ni2BiO6—
low-temperature measurements have been performed and no
signs of superconductivity were observed.63) None of them is
predicted to have Tc in excess of 40 K, which is not surprising,
given that no such instances exist in the training dataset. All
contain oxygen—also not a surprising result, since the group of
known superconductors with Tc > 20 K is dominated by oxides.
The list comprises several distinct groups. Most of the materials

are insulators, similar to stoichiometric (and underdoped)
cuprates; charge doping and/or pressure will be required to drive
these materials into a superconducting state. Especially interesting
are the compounds containing heavy metals (such as Au, Ir, and
Ru), metalloids (Se, Te), and heavier post-transition metals (Bi, Tl),
which are or could be pushed into interesting/unstable oxidation
states. The most surprising and non-intuitive of the compounds in
the list are the silicates and the germanates. These materials form
corner-sharing SiO4 or GeO4 polyhedra, similar to quartz glass, and
also have counter cations with full or empty shells, such as Cd2

+ or
K+. Converting these insulators to metals (and possibly super-
conductors) likely requires significant charge doping. However,
the similarity between these compounds and cuprates is mean-
ingful. In compounds like K2CdSiO4 or K2ZnSiO4, K2Cd (or K2Zn)
unit carries a 4+ charge that offsets the (SiO4)

4− (or (GeO4)
4−)

charges. This is reminiscent of the way Sr2 balances the (CuO4)
4−

unit in Sr2CuO4. Such chemical similarities based on charge
balancing and stoichiometry were likely identified and exploited
by the ML algorithms.
The electronic properties calculated by AFLOW offer additional

insight into the results of the search, and suggest a possible
connection among these candidate. Plotting the electronic
structure of the potential superconductors exposes a rather
unusual feature shared by almost all—one or several (nearly) flat
bands just below the energy of the highest occupied electronic
state. Such bands lead to a large peak in the DOS (Fig. 6) and can
cause a significant enhancement in Tc. Peaks in the DOS elicited
by van Hove singularities can enhance Tc if sufficiently close to
EF.

64–66 However, note that unlike typical van Hove points, a true
flat band creates divergence in the DOS (as opposed to its
derivatives), which in turn leads to a critical temperature

Table 3. List of potential superconductors identified by the pipeline

Compound ICSD SYM

CsBe(AsO4) 074027 Orthorhombic

RbAsO2 413150 Orthorhombic

KSbO2 411214 Monoclinic

RbSbO2 411216 Monoclinic

CsSbO2 059329 Monoclinic

AgCrO2 004149/025624 Hexagonal

K0.8(Li0.2Sn0.76)O2 262638 Hexagonal

Cs(MoZn)(O3F3) 018082 Cubic

Na3Cd2(IrO6) 404507 Monoclinic

Sr3Cd(PtO6) 280518 Hexagonal

Sr3Zn(PtO6) 280519 Hexagonal

(Ba5Br2)Ru2O9 245668 Hexagonal

Ba4(AgO2)(AuO4) 072329 Orthorhombic

Sr5(AuO4)2 071965 Orthorhombic

RbSeO2F 078399 Cubic

CsSeO2F 078400 Cubic

KTeO2F 411068 Monoclinic

Na2K4(Tl2O6) 074956 Monoclinic

Na3Ni2BiO6 237391 Monoclinic

Na3Ca2BiO6 240975 Orthorhombic

CsCd(BO3) 189199 Cubic

K2Cd(SiO4) 083229/086917 Orthorhombic

Rb2Cd(SiO4) 093879 Orthorhombic

K2Zn(SiO4) 083227 Orthorhombic

K2Zn(Si2O6) 079705 Orthorhombic

K2Zn(GeO4) 069018/085006/085007 Orthorhombic

(K0.6Na1.4)Zn(GeO4) 069166 Orthorhombic

K2Zn(Ge2O6) 065740 Orthorhombic

Na6Ca3(Ge2O6)3 067315 Hexagonal

Cs3(AlGe2O7) 412140 Monoclinic

K4Ba(Ge3O9) 100203 Monoclinic

K16Sr4(Ge3O9)4 100202 Cubic

K3Tb[Ge3O8(OH)2] 193585 Orthorhombic

K3Eu[Ge3O8(OH)2] 262677 Orthorhombic

KBa6Zn4(Ga7O21) 040856 Trigonal

Also shown are their ICSD numbers and symmetries. Note that for some
compounds there are several entries. All of the materials contain oxygen
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dependence linear in the pairing interaction strength, rather than
the usual exponential relationship yielding lower Tc.

33 Additionally,
there is significant similarity with the band structure and DOS of
layered BiS2-based superconductors.67

This band structure feature came as the surprising result of
applying the ML model. It was not sought for, and, moreover, no
explicit information about the electronic band structure has been
included in these predictors. This is in contrast to the algorithm
presented in ref. 30, which was specifically designed to filter ICSD
compounds based on several preselected electronic structure
features.
While at the moment it is not clear if some (or indeed any) of

these compounds are really superconducting, let alone with Tc’s
above 20 K, the presence of this highly unusual electronic
structure feature is encouraging. Attempts to synthesize several
of these compounds are already underway.

DISCUSSION
Herein, several machine learning tools are developed to study the
critical temperature of superconductors. Based on information
from the SuperCon database, initial coarse-grained chemical
features are generated using the Magpie software. As a first
application of ML methods, materials are divided into two classes
depending on whether Tc is above or below 10 K. A non-
parametric random forest classification model is constructed to
predict the class of superconductors. The classifier shows excellent
performance, with out-of-sample accuracy and F1 score of about
92%. Next, several successful random forest regression models are
created to predict the value of Tc, including separate models for
three material sub-groups, i.e., cuprate, iron-based, and low-Tc
compounds. By studying the importance of predictors for each
family of superconductors, insights are obtained about the
physical mechanisms driving superconductivity among the

different groups. With the incorporation of crystallographic-/
electronic-based features from the AFLOW Online Repositories,
the ML models are further improved. Finally, we combined these
models into one integrated pipeline, which is employed to search
the entire ICSD database for new inorganic superconductors. The
model identified 35 oxides as candidate materials. Some of these
are chemically and structurally similar to cuprates (even though no
explicit structural information was provided during training of the
model). Another feature that unites almost all of these materials is
the presence of flat or nearly-flat bands just below the energy of
the highest occupied electronic state.
In conclusion, this work demonstrates the important role ML

models can play in superconductivity research. Records collected
over several decades in SuperCon and other relevant databases
can be consumed by ML models, generating insights and
promoting better understanding of the connection between
materials’ chemistry/structure and superconductivity. Application
of sophisticated ML algorithms has the potential to dramatically
accelerate the search for candidate high-temperature
superconductors.

METHODS
Superconductivity data
The SuperCon database consists of two separate subsets: “Oxide and
Metallic” (inorganic materials containing metals, alloys, cuprate high-
temperature superconductors, etc.) and “Organic” (organic superconduc-
tors). Downloading the entire inorganic materials dataset and removing
compounds with incompletely specified chemical compositions leaves
about 22,000 entries. If a single Tc record exists for a given material, it is
taken to accurately reflect the critical temperature of this material. In the
case of multiple records for the same compound, the reported material’s
Tc's are averaged, but only if their standard deviation is <5 K, and discarded
otherwise. This brings the total down to about 16,400 compounds, of
which around 4,000 have no critical temperature reported. Each entry in
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Fig. 6 DOS of four compounds identified by the ML algorithm as potential materials with Tc > 20 K. The partial DOS contributions from s, p,
and d electrons and total DOS are shown in blue, green, red, and black, respectively. The large peak just below EF is a direct consequence of
the flat band(s) present in all these materials. These images were generated automatically via AFLOW42. In the case of substantial overlap
among k-point labels, the right-most label is offset below
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the set contains fields for the chemical composition, Tc, structure, and a
journal reference to the information source. Here, structural information is
ignored as it is not always available.
There are occasional problems with the validity and consistency of some

of the data. For example, the database includes some reports based on
tenuous experimental evidence and only indirect signatures of super-
conductivity, as well as reports of inhomogeneous (surface, interfacial) and
non-equilibrium phases. Even in cases of bona fide bulk superconducting
phases, important relevant variables like pressure are not recorded.
Though some of the obviously erroneous records were removed from the
data, these issues were largely ignored assuming their effect on the entire
dataset to be relatively modest. The data cleaning and processing is carried
out using the Python Pandas package for data analysis.68

Chemical and structural features
The predictors are calculated using the Magpie software.69 It computes a
set of 145 attributes for each material, including: (i) stoichiometric features
(depends only on the ratio of elements and not the specific species); (ii)
elemental property statistics: the mean, mean absolute deviation, range,
minimum, maximum, and mode of 22 different elemental properties (e.g.,
period/group on the periodic table, atomic number, atomic radii, melting
temperature); (iii) electronic structure attributes: the average fraction of
electrons from the s, p, d, and f valence shells among all elements present;
and (iv) ionic compound features that include whether it is possible to
form an ionic compound assuming all elements exhibit a single-oxidation
state.
ML models are also constructed with the superconducting materials in

the AFLOW Online Repositories. AFLOW is a high-throughput ab initio
framework that manages density functional theory (DFT) calculations in
accordance with the AFLOW Standard.21 The Standard ensures that the
calculations and derived properties are empirical (reproducible), reason-
ably well-converged, and above all, consistent (fixed set of parameters), a
particularly attractive feature for ML modeling. Many materials properties
important for superconductivity have been calculated within the AFLOW
framework, and are easily accessible through the AFLOW Online
Repositories. The features are built with the following properties: number
of atoms, space group, density, volume, energy per atom, electronic
entropy per atom, valence of the cell, scintillation attenuation length, the
ratios of the unit cell’s dimensions, and Bader charges and volumes. For
the Bader charges and volumes (vectors), the following statistics are
calculated and incorporated: the maximum, minimum, average, standard
deviation, and range.

Machine learning algorithms
Once we have a list of relevant predictors, various ML models can be
applied to the data.51,52 All ML algorithms in this work are variants of the
random forest method.53 It is based on creating a set of individual decision
trees (hence the “forest”), each built to solve the same classification/
regression problem. The model then combines their results, either by
voting or averaging depending on the problem. The deeper individual tree
are, the more complex the relationships the model can learn, but also the
greater the danger of overfitting, i.e., learning some irrelevant information
or just “noise”. To make the forest more robust to overfitting, individual
trees in the ensemble are built from samples drawn with replacement (a
bootstrap sample) from the training set. In addition, when splitting a node
during the construction of a tree, the model chooses the best split of the
data only considering a random subset of the features.
The random forest models above are developed using scikit-learn—a

powerful and efficient machine learning Python library.70 Hyperparameters
of these models include the number of trees in the forest, the maximum
depth of each tree, the minimum number of samples required to split an
internal node, and the number of features to consider when looking for the
best split. To optimize the classifier and the combined/family-specific
regressors, the GridSearch function in scikit-learn is employed, which
generates and compares candidate models from a grid of parameter
values. To reduce computational expense, models are not optimized at
each step of the backward feature selection process.
To test the influence of using log-transformed target variable ln(Tc), a

general regression model is trained and tested on raw Tc data (shown in
Fig. 7). This model is very similar to the one described in section “Results”,
and its R2 value is fairly similar as well (although comparing R2 scores of
models built using different target data can be misleading). However, note

the relative sparsity of data points in some Tc ranges, which makes the
model susceptible to outliers.

Flat bands feature
The flat band attribute is unusual for a superconducting material: the
average DOS of the known superconductors in the ICSD has no distinct
features, demonstrating roughly uniform distribution of electronic states.
In contrast, the average DOS of the potential superconductors in Table 3
shows a sharp peak just below EF (Fig. 8). Also, note that most of the flat
bands in the potential superconductors we discuss have a notable
contribution from the oxygen p-orbitals. Accessing/exploiting the potential
strong instability this electronic structure feature creates can require
significant charge doping.

Prediction errors of the regression models
Previously, several regression models were described, each one designed
to predict the critical temperatures of materials from different super-
conducting groups. These models achieved an impressive R2 score,

Fig. 8 Flat bands feature. Comparison between the normalized
average DOS of 380 known superconductors in the ICSD (left) and
the normalized average DOS of the potential high-temperature
superconductors from Table 3 (right)

Fig. 7 Regression model predictions of Tc. Predicted vs. measured Tc
for general regression model. R2 score is comparable to the one
obtained testing regression modeling ln(Tc)
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demonstrating good predictive power for each group. However, it is also
important to consider the accuracy of the predictions for individual
compounds (rather than on the aggregate set), especially in the context of
searching for new materials. To do this, we calculate the prediction errors
for about 300 materials from a test set. Specifically, we consider the
difference between the logarithm of the predicted and measured critical
temperature ln Tmeas

c

� �� ln Tpredc

� �� �
normalized by the value of ln Tmeas

c

� �

(normalization compensates the different Tc ranges of different groups).
The models show comparable spread of errors. The histograms of errors for
the four models (combined and three group-specific) are shown in Fig. 9.
The errors approximately follow a normal distribution, centered not at zero
but at a small negative value. This suggests the models are marginally
biased, and on average tend to slightly underestimate Tc. The variance is
comparable for all models, but largest for the model trained and tested on
iron-based materials, which also shows the smallest R2. Performance of this
model is expected to benefit from a larger training set.

Data availability
The superconductivity data used to generate the results in this work can
be downloaded from https://github.com/vstanev1/Supercon.
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