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A B S T R A C T

Disordered materials are attracting considerable attention because of their enhanced properties compared to
their ordered analogs, making them particularly suitable for high-temperature applications. The feasibility of
incorporating these materials into new devices depends on a variety of thermophysical properties. Among
them, thermal expansion is critical to device stability, especially in multi-component systems. Its calculation,
however, is quite challenging for materials with substitutional disorder, hindering computational screenings.
In this work, we introduce QH-POCC to leverage the local tile-expansion of disorder. This method provides
an effective partial partition function to calculate thermomechanical properties of substitutionally disordered
compounds in the quasi-harmonic approximation. Two systems, AuCu3 and CdMg3, the latter a candidate
for long-period superstructures at low temperature, are used to validate the methodology by comparing
the calculated values of the coefficient of thermal expansion and isobaric heat capacity with experiment,
demonstrating that QH-POCC is a promising approach to study thermomechanical properties of disordered
systems.
1. Introduction

Multi-component alloys (MCAs) and ceramics (MCCs) are novel
classes of materials offering enhanced properties such as ultra-high
hardness [1,2], low thermal conductivity [3], and good corrosion and
wear resistance [4–6]. The combination of these properties makes
them suitable for applications in thermal barrier coatings [7], ther-
moelectrics [8], ultra-high temperature structural applications [9], and
diffusion barriers for microelectronics [10]. In these types of applica-
tions, a material is often part of a multi-component system. It is thus not
only critical for the material to have optimized properties, but it must
also be compatible with the remaining parts of the device at operating
conditions [11]. For example, combining components with incompat-
ible coefficients of thermal expansion (CTEs) would compromise the
integrity of the product at higher temperatures.

While measuring CTEs has become an increasingly integral part of
experimental research of MCAs and MCCs [12–15], the substitutional
disorder presents a formidable challenge for computational investiga-
tions of these materials, resulting in only few computed CTE values
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with scarce experimental validation [16,17]. To date, calculations of
thermal expansion in systems with substitutional disorder have em-
ployed the Coherent Potential Approximation (CPA) [18,19], Special
Quasirandom Structures (SQS) [20], or the cluster expansion (CE)
method [21,22]. The CPA allows for modeling alloys of any stoi-
chiometry using relatively small unit cells. However, it cannot reliably
calculate atomic forces [23] and is thus unable to employ conven-
tional lattice dynamics methods. SQS models disordered systems at a
fixed composition by finding the most random (infinite temperature)
representation of the structure. As a consequence, it neglects finite-
temperature short-range ordering effects. CE calculates thermodynamic
properties through a series expansion of the free energy using a set
of ordered structures. While the obtained free energy is exact, the
combinatorial explosion of the number of cluster expansion parameters
makes the study of complex MCAs and MCCs impractical.

The Partial OCCupation (POCC) method was developed to include
finite-temperature effects while alleviating the computational cost of
CE [24], thus allowing practical studies of multi-component systems.
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POCC models the disordered material through a series of small tiles –
ordered representative supercells with the same stoichiometry as the
parent structure – which are also capable of calculating vibrational
properties [25]. This particular expansion allows POCC to factorize the
tiling entropy associated with the latent heat of a first order phase tran-
sition (from chemical order and microstructural disorder to chemical
disorder and no microstructures), and to generate a partial partition
function out of the global one. The approach, taken at finite tem-
peratures with the quasi-harmonic approximation (QHA), enables the
calculation of thermomechanical properties. The extended method,
called QH-POCC, is tested on AuCu3 and CdMg3 for the ordered and
disordered fields. Both thermal expansion and isobaric heat capacity
are in good agreement with experiments, demonstrating the potential of
QH-POCC to accurately model thermomechanical properties in the QHA
at a reasonable computational cost. We chose the latter compound for
its capabilities in forming long-period superstructures at low tempera-
ture [26–28], so that the effect of the diverging characteristic lengths
of the ground-state can be qualitatively compared against the finite size
of the POCC tiles expansion.

2. Computational methods

Thermal Expansion of Disordered Systems. The volumetric CTE
𝛽 is defined as the logarithmic derivative of the temperature-dependent
equilibrium volume:

𝛽 =
𝑑 log(𝑉eq(𝑇 ))

𝑑𝑇
= 1

𝑉eq(𝑇 )
𝑑𝑉eq(𝑇 )

𝑑𝑇
, (1)

where 𝑉eq(𝑇 ) is the equilibrium volume at temperature 𝑇 , i.e., the vol-
me 𝑉 for which the temperature- and volume-dependent free energy
is at a minimum:

𝜕𝐹 (𝑉 , 𝑇 )
𝜕𝑉

= 0. (2)

(𝑉 , 𝑇 ) consists of the following contributions when neglecting anhar-
onic effects:

(𝑉 , 𝑇 ) = 𝐸0(𝑉 ) + 𝐹elec(𝑉 , 𝑇 ) + 𝐹vib(𝑉 , 𝑇 ). (3)

0 is the energy of the structure at 0 K. 𝐹elec is the electronic contribu-
ion to the free energy and can be calculated as:

𝐹elec(𝑉 , 𝑇 ) = 𝑈elec − 𝑇𝑆elec, (4)

elec(𝑉 , 𝑇 ) = ∫

∞

0
𝑓FD𝑔e (𝜖, 𝑉 ) 𝜖𝑑𝜖 − ∫

𝐸F

0
𝑔e (𝜖, 𝑉 ) 𝜖𝑑𝜖, (5)

𝑆elec(𝑇 ) = −𝑘B ∫

∞

0
𝑔e (𝜖, 𝑉 ) 𝑠𝑇 (𝜖)𝑑𝜖. (6)

ere, 𝑔e (𝜖, 𝑉 ) is the electronic density of states (DOS), 𝑓FD = 𝑓FD (𝜖, 𝑇 )
s the Fermi–Dirac distribution, 𝐸F is the Fermi energy, and 𝑠𝑇 (𝜖) =
FD log(𝑓FD) + (1 − 𝑓FD) log(1 − 𝑓FD) is the electronic entropy of 𝜖.

The last contribution, 𝐹vib, is the vibrational free energy. It can be
alculated via the phonon DOS, 𝑔ph (𝜔(𝑉 )), as:

𝐹vib(𝑉 , 𝑇 ) = 𝑘B𝑇 ∫

∞

0
log

(

2 sinh
ℏ𝜔(𝑉 )
2𝑘B𝑇

)

𝑔ph (𝜔(𝑉 )) 𝑑𝜔, (7)

where 𝜔 is the phonon frequency and ℏ is the reduced Planck constant.
In the QHA, 𝑉eq(𝑇 ) is obtained by calculating 𝐹 (𝑉 , 𝑇 ) over a set

of volumes and fitting the volume-dependent free energy to an equa-
tion of state (EOS) for each temperature. Calculating the volume-
dependency of 𝐹 is thus the central problem for the calculation of
thermomechanical properties at finite temperatures.

Computational modeling of MCAs and MCCs – and therefore accu-
rate calculation of free energies – is challenging due to the substitu-
tional disorder in these compounds. AFLOW-POCC describes disordered
materials through an ensemble of small Hermite-normal-form (HNF)
ordered representatives [29–31], also called tiles. This method repro-
duces the correct composition, symmetry, and properties that depend
2

t

on the radial distribution function of the system but needs to be
integrated over all possible tiling configurations if the global parti-
tion function 𝑍global and free energy 𝐹global are needed. For an 𝑁𝑉 𝑇
ensemble, 𝑍global can be calculated as:

𝑍global (𝑉 , 𝑇 ) ≡
∑

𝑖−tiles
tiling[{𝑉𝑖}]=𝑉

𝑔𝑖 exp

(

−
𝐹𝑖

(

𝑉𝑖, 𝑇
)

𝑘B𝑇

)

, (8)

where 𝑘B is the Boltzmann constant and 𝑉𝑖 is the volume of the 𝑖 th
tile. The sum is constrained by the organization of the tiles covering
the whole normalized volume ∑

{

𝑉𝑖
}

∕𝑁 = 𝑉 with the global number
of tiles 𝑁 . 𝑍global (𝑉 , 𝑇 ) can be used to obtain 𝐹global through:

𝐹global(𝑉 , 𝑇 ) ≡ −𝑘B𝑇 log𝑍global
(

𝑉𝑖, 𝑇
)

. (9)

The calculation of 𝑍global (𝑉 , 𝑇 ) is highly non-trivial. The number
of possible configurations 𝛺tiling – having the correct volume where
all the pieces fit together – increases with the cut off of the max-
imum POCC tile-size. Thermodynamically, this number also leads to
the tiling entropy 𝑆tiling ≡ 𝑘B log𝛺tiling. The properties describing the
‘‘organization’’,

{

𝛺tiling, 𝑆tiling
}

, can be calculated combinatorially or
through Monte Carlo modeling like in percolation or self-avoiding
random-walks theories, but incurs great computational cost. Here, these
quantities can be neglected because of the following considerations:
i. 𝛺tiling varies slowly unless near a first-order phase transition. The
number of possible configurations depends on the identity and distri-
bution of the individual tiles. Therefore, 𝛺tiling is nearly constant below
and above the transition temperature, albeit not the same in general.
At the phase transition, on the other hand, the Boltzmann population
vector suddenly rotates in the probability hyperspace (see Fig. 2e in
Ref. [32]), leading to completely different tiling-distribution identities
and thus a different 𝛺tiling. Similar considerations hold for the tiling
entropy: 𝑆tiling(𝑇 ) is a slowly varying function of 𝑇 unless a phase
transition is crossed.
ii. Derivatives 𝜕[⋅]∕𝜕𝑇 operating on functionals containing 𝑆tiling(𝑇 )
may ignore tiling contributions. As long as 𝜕[⋅]∕𝜕𝑇 is not operated
at the phase transition (or nearby, as precursors start appearing
[32]), 𝑆tiling(𝑇 ) can be neglected with great computational savings.
Temperature-derivative properties, such as specific heat and thermal
expansion, can be estimated below and above the transition tempera-
ture without direct knowledge of the organization of the tiles.
iii. Once the tiling organization is settled, phase stability requires
minimization of free energies. This, in turn, requires minimization with
respect the total tiling organization along the aforementioned volume
constraints, ∑

{

𝑉𝑖
}

∕𝑁 = 𝑉 (Lie derivative). In general, min
[
∑

{⋅}
]

≠
∑

min [{⋅}] — yet, the POCC model allows to solve this conundrum: in
canonical POCC-tiles, both species concentration and superlattice are
conserved. Only atoms are swapped generating symmetrically inequiv-
alent decorations [24]. As such, the volumes 𝑉𝑖 and minimum energy
𝐸𝑖 (or 𝐻𝑖 in an applied stress field) for each 𝑖-tile will be quite close,
𝑉𝑖 ∼ 𝑉 , so that the global EOS can be summarized as:

min
[

EOS{𝑉𝑖}
]

≡ min

[

∑

𝑖
EOS𝑖(𝑉𝑖)

]

≈

≈
∑

𝑖
min

[

EOS𝑖(𝑉𝑖)
]

≈
∑

𝑖
EOS𝑖(𝑉 ). (10)

Eq. (10) coupled with Eqs. (8) and (9) allow the definition of a partial
partition function 𝑍POCC(𝑉 , 𝑇 ) and free energy 𝐹POCC(𝑉 , 𝑇 ):

𝑍POCC (𝑉 , 𝑇 ) ≡
∑

𝑖−tiles
𝑔𝑖 exp

(

−
𝐹𝑖 (𝑉 , 𝑇 )
𝑘B𝑇

)

, (11)

𝐹POCC(𝑉 , 𝑇 ) ≡ −𝑘B𝑇 log𝑍POCC (𝑉 , 𝑇 ) . (12)

ven though 𝑍POCC and 𝐹POCC neglect tiling entropy, they are capa-
le of reproducing 𝑇 -derivative properties outside regions of phase

ransition, without the cumbersome calculation of the global partition
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Fig. 1. Illustration of the QH-POCC workflow. The free energies of the AFLOW-POCC
tiles {𝑆𝑖} are sampled for various volumes near the equilibrium. The free energies are
interpolated and then ensemble-averaged to resolve the free energy of the disordered
system, from which thermomechanical properties can be derived.

function. Eq. (12) can then be used to construct the EOS of the disor-
dered material, leading to the global coefficient of thermal expansion
via Eq. (1). This scheme is illustrated in Fig. 1.

From the EOS-fitted curve, other thermomechanical properties can
be derived. The isobaric (𝐶P) and isochoric (𝐶V) heat capacities can be
calculated as:

𝐶P = −𝑇
(

𝜕2𝐹POCC(𝑉 , 𝑇 )
𝜕𝑇 2

)

𝑃
= −𝑇

𝜕2𝐹POCC(𝑉eq, 𝑇 )

𝜕𝑇 2
, (13)

𝐶V = 𝐶P − 𝑉eq𝐵𝛽
2𝑇 , (14)

where 𝐵 is the bulk modulus:

𝐵 = 𝑉
𝜕2𝐹POCC(𝑉 , 𝑇 )

𝜕𝑉 2
. (15)

These quantities can be used to determine the effective Grüneisen
parameter �̄�:

̄ =
𝑉eq𝐵𝛽
𝐶V

. (16)

Calculations’ details. AFLOW [40] leverages the Vienna ab initio
simulation package (VASP) with all calculation parameters following
the AFLOW standard [41]. Exchange and correlation were treated with
the projector augmented wave (PAW) method [42] in either the local
density approximation (LDA) [43] or generalized gradient approxima-
tion (GGA) proposed by Perdew, Burke, and Ernzerhof (PBE) [44]. The
cutoff energies are chosen to be 1.4 times the recommended maximum
cutoffs (ENMAX) of all pseudopotentials as set by VASP.

Disordered compounds were modeled using the AFLOW-POCC mod-
ule with a supercell size of 4, resulting in 7 and 29 unique tiles,
respectively. Phonon calculations were performed using the AFLOW-
APL module [25]. Supercell sizes and 𝐤-point mesh dimensions were
selected such that free energies were converged to within 1 meV/atom
for representative tiles of the disordered materials. For ordered rep-
resentatives of CdMg3, the supercells used to calculate the phonon
properties were constructed to have at least 64 atoms, while for the
ordered representatives of AuCu3, the sizes were chosen as specified
in Table 1. Forces within these supercells were calculated with a 𝐤-
points mesh having at least 6900 and 3000 𝐤-points per reciprocal
atom (KPPRA) for AuCu3 and CdMg3, respectively [41].

For the EOS fit, vibrational properties were calculated at various
compressed and expanded volumes, typically spanning −12% to 12%
of the equilibrium volume at a 6% increment. For AuCu3, adjustments
needed to be made to accommodate for the presence of imaginary
frequencies (see Table 1). Ordered representative #3 of AuCu3 has
unstable modes with the LDA functional at 3% volume compression,
but these modes were easily omitted in the calculation of the thermo-
mechanical properties because their contributions to the phonon DOS
3

Table 1
Parameters for the QHA calculations of the ordered representatives of AuCu3. The
volume range is given in percent and in the format initial:final:increment. Negative
values denote compression, positive values expansion of the cell. rhl: rhombohedral,
orc: orthorhombic, mclc: base-centered monoclinic, tet: tetragonal, bct: body-centered
tetragonal, orcc: base-centered orthorhombic, cub: simple cubic.

POCC structure Supercell Lattice type Volume change (%)

1 2 × 2 × 2 rhl −12:12:6
2 2 × 2 × 1 orc −12:12:6
3 2 × 2 × 1 mclc −3:12:6
4 3 × 3 × 2 tet −12:12:6
5 2 × 2 × 2 bct −12:12:6
6 2 × 2 × 4 orcc −6:12:6
7 2 × 2 × 2 cub −12:12:6

were negligible. Ordered representative #4 of AuCu3 was found to be
dynamically unstable and was discarded entirely from the ensemble of
structures. The calculated free energies were fitted using the Stabilized
Jellium EOS [45,46]:

𝐹 (𝑉 ) =
3
∑

𝑖=0
𝑓𝑖𝑉

− 1
3 𝑖. (17)

The parameters 𝑓𝑖 were determined using a polynomial fit.

3. Results and discussion

Two disordered alloys are used to validate the QH-POCC method:
AuCu3 and CdMg3. These compounds were chosen due to their simple
crystal structures and readily available experimental data. AuCu3 is or-
dered at low temperatures and crystallizes in the L12 structure (AFLOW
prototype AB3_cP4_221_a_c [47–49]). Above 450 K, it becomes partially
disordered and then fully disordered above 663 K, where it adopts
a face-centered cubic crystal structure (AFLOW prototype A_cF4_225_
a) [33,50]. CdMg3 transitions from its ordered D019 phase (AFLOW
prototype A3B_hP8_194_h_c) to a hexagonal close-packed disordered
structure at 423 K [35,51].

Fig. 2 shows the calculated thermomechanical properties for these
materials in their ordered and disordered phases using the Local
Density Approximation (LDA) and the Perdew–Burke–Ernzerhof (PBE)
functional. For both ordered and disordered AuCu3, 𝛽 increases with
increasing temperature until they plateau above 200 K (Fig. 2a). The
CTE of the disordered structure is larger than of the ordered phase
for all temperatures, which is consistent with experiment. PBE over-
estimates experimental 𝛽 values for both states. The disordered phase
even appears to diverge at higher temperatures, which is expected for
QHA, as anharmonic contributions become increasingly dominant. LDA
shows excellent agreement with experimental values, suggesting that
the choice of the functional is the reason for the bad agreement for
PBE.

The CTE of CdMg3 is shown in Fig. 2b. The curves of the ordered
phases show similar behavior as those for AuCu3, except for 𝛽 for
LDA, which converges towards the value of the disordered phase.
Good experimental values for the ordered phase are unavailable in
literature, but extrapolating from the tail found in the experimental
values, it is anticipated to see good agreement. Above the experi-
mental order–disorder transition temperature, the disordered phase
shows good agreement for PBE whereas LDA underestimates 𝛽. This
shows that the functional choice is critical when calculating thermal
expansion of these materials. QH-POCC also shows a striking difference
in the disordered phase compared to AuCu3: 𝛽 of disordered CdMg3
exhibits a peak at 50 K and 70 K for PBE and LDA, respectively.

The isobaric heat capacities shown in Fig. 2c for AuCu3 and in
Fig. 2d for CdMg3 are less sensitive to the chosen functional. The agree-
ment with experimental values for the ordered structures is excellent
for both functionals. 𝐶P for the disordered phases are underestimated,
but still in good agreement with experiments. A peak can be observed

https://aflow.org/prototype-encyclopedia/AB3_cP4_221_a_c.html
https://aflow.org/prototype-encyclopedia/A_cF4_225_a.html
https://aflow.org/prototype-encyclopedia/A_cF4_225_a.html
https://aflow.org/prototype-encyclopedia/A_cF4_225_a.html
https://aflow.org/prototype-encyclopedia/A3B_hP8_194_h_c.html
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Fig. 2. Thermomechanical properties of Cu𝟑Au and CdMg𝟑 from QH-POCC. a, b Thermal expansion coefficient 𝛽, c, d isobaric heat capacity 𝐶P, e, f bulk modulus 𝐵, and
g, h effective Grüneisen parameter �̄� of AuCu3 (left) and CdMg3 (right). The dashed vertical lines for AuCu3 represent the transition temperatures to the partially and the fully
disordered states, respectively. The dashed vertical lines for CdMg3 denote the transition temperature to the disordered structure. Experimental values are taken from Refs. [33–38].
Note ‘‘QHA/LPS’’∗. For CdMg3, the unphysical peaks of thermal expansion, heat capacity and Grüneisen parameter, suggest the formation of long-period superstructures (LPS),
modulations of the hexagonal ordered structure D019 taken as reference for the POCC expansion. The finite-size cutoff of the tiles cannot represent the divergence of the
characteristic lengths of the long-period superstructures. Thus, the constrained LTVC population vector [32] will rotate and promote modifications of D019 containing antiphase
boundaries [39] (with increasing volume) without reaching full LPS description.
in QH-POCC for both LDA and PBE in disordered CdMg3, with the peak
for LDA being at a higher temperature.

For the bulk modulus, experimental data is only available for
AuCu3 [38]. As Fig. 2e shows, PBE underestimates 𝐵 whereas LDA
strongly overestimates it. 𝐵 is very sensitive to the chosen functional
since it depends on the volume of the unit cell. This is not a shortcoming
of QH-POCC, but of QHA, as this behavior was also found for simple
ordered materials such as MgO and CaO [52]. To further substantiate
that QH-POCC is consistent with other methods, 𝐵 was calculated at
0 K using the AFLOW Automatic Elastic Library (AEL) [53] — Fig. 2e
demonstrates that AEL and QH-POCC are consistent with each other.
The values for the disordered phase is smaller than for the ordered
phase at all temperatures, which is consistent with experiments. How-
ever, 𝐵 drops much faster with temperature than experiments suggest,
which has also been observed in ordered materials [52].

As for AuCu3, CdMg3 has a smaller bulk modulus in the disordered
than in the ordered state, with LDA resulting in larger moduli than PBE.
The temperature dependence of disordered CdMg3 differs from AuCu3
by showing an inflection, the end point of which coincides with the
temperature of the peak in 𝛽 and 𝐶 for both functionals.
4

P

Finally, Figs. 2g and h show the effective Grüneisen parameters for
both materials. In general, �̄� is larger for the disordered material than
the ordered material, particularly at higher temperatures. An exception
is LDA and CdMg3, where �̄� for the ordered phase approaches the
disordered phase due to the divergence of 𝛽 at higher temperatures.
Higher values of �̄� correlate with lower thermal conductivity, which is
expected for materials with substitutional disorder [3]. The divergences
found at low temperatures are the result of the calculation method: as
Eq. (16) shows, �̄� depends on the quotient of 𝛽 and 𝐶V, both of which
are very small at low temperatures, causing numerical instabilities. This
relationship also causes the peak for CdMg3 as 𝛽 peaks stronger than
𝐶P.

In experiments, peaks in thermal expansion and isobaric heat ca-
pacity typically indicate phase transitions. Here, peaks are not found
in QHA for ordered phases and in disordered CdMg3 regions. From
the solid solution and upon reducing temperature, CdMg3 transitions
from a disordered hexagonal close-packed structure to the ordered
D019 [26,51]. With further temperature reduction, D019 often develops
antiphase boundaries and complex stacking faults [39], associated with
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forming long-period superstructures (LPS). Notably, several Cd and
Mg binary alloys show similar features [26–28]. The divergence of
the characteristic length scale in the LPS cannot be reproduced by
the tiles having a finite size, making the POCC expansion incomplete.
Therefore, the constrained LTVC population vector [32] will rotate and
promote modifications of D019 containing antiphase boundaries and
stacking faults having increased volume without ever reaching full LPS
description. While such computational limitation is expected to appear
at low temperatures and in all systems having ordered ground-states
with characteristic length scales too large for the POCC-tiles expansion,
our algorithm has been devised to study disordered systems at high
temperatures where only short-range needs to be described [11,54]. As
such, the limitation does not pose any concern.

Experiments suggest that a peak should appear in 𝛽 and 𝐶P for
AuCu3 as well, but none are observable in Figs. 2a and c. The rea-
son for this discrepancy could be the sample size of the canonical
ensemble: POCC creates only 7 ordered representatives for AuCu3, but
29 for CdMg3. To test this hypothesis, the size of the HNF matrix
was increased to 8, which produced 49 ordered representatives. As
Figs. 3a and b show, increasing the maximum POCC tile size results
in a peak in both thermal expansion and heat capacity, confirming
that small sampling suppressed the appearance of the phase transition.
However, no inflection point can be observed in the bulk modulus as
was observed in CdMg3 (see Fig. 3c). This is not surprising because
the values for the ordered and disordered phase are similar at low
temperatures in both QH-POCC and experiments, making any inflection
imperceptible. Finally, the effective Grüneisen parameter, shown in
Fig. 3d, shows a deep dip at lower temperatures when the supercell
size is increased due to the larger peak height in 𝐶P, which is in the
denominator of �̄�.

As with CdMg3, the calculated transition temperature of AuCu3 is
far below the experimental value. While transitioning from an ordered
to a disordered phase, both materials are in a partially ordered state
spanning at least 100 K. The requirement of POCC that the stoichiome-
try of the tiles correspond to the disordered structure parametrizes this
transition region as a line. To improve the accuracy of the transition
temperature, a more complete picture of the tile distribution is needed
so that the variation of 𝑆tiling can be captured. This could be achieved,
for example, by including structures with compositions different from
the parent structure. A similar approach is employed in the Lederer–
Toher–Vecchio–Curtarolo (LTVC) method, which can accurately predict
the transition temperature, but requires more input data [32].

Outside the transition region, however, all properties are well con-
verged with respect to the POCC supercell size. So, while 𝛺tiling and
𝑆tiling may change with increased maximum tile size, their temperature
derivatives do not. The smallest supercell is thus sufficient to calculate
thermophysical properties of the disordered material.

4. Conclusions

This work introduces a new framework, QH-POCC, to perform
finite temperature calculations of thermophysical properties of systems
with substitutional disorder. The method uses the Partial OCCupation
algorithm and the quasi-harmonic approximation (QHA) to calculate
finite-temperature free energies using a canonical ensemble. This en-
semble is then used to determine properties accessible via the QHA.
Two systems, AuCu3 and CdMg3, were used to validate the approach
by comparing calculated values of thermal expansion and isobaric heat
capacity with experimental data. The results are in a good agree-
ment with experiments, demonstrating that QH-POCC is a promising
method to study finite-temperature vibrational properties. Due to the
implicit incorporation of the configurational energy, QH-POCC is able
to recover features that are inaccessible to methods that rely on only
one supercell. Peaks in both thermal expansion and heat capacity
indicate structural phase transitions. The combination of computational
efficiency, capability to bypass the calculation of the tiling-entropy, and
overall accuracy makes QH-POCC an excellent screening tool for ther-
momechanical properties of disordered materials in the quasi-harmonic
approximation.
5

Fig. 3. Thermomechanical properties of Cu𝟑Au for larger POCC supercells. a
Thermal expansion coefficient 𝛽, b isobaric heat capacity 𝐶P, c bulk modulus 𝐵, and d
effective Grüneisen parameter �̄� of AuCu3 for POCC supercell sizes (HNF) 4 (solid
lines) and 8 (dash-dotted lines). The dashed vertical lines represent the transition
temperatures to the partially and the fully disordered state, respectively.

Software availability

The code is freely available as part of the AFLOW software suite
[40]. All information to reproduce the data are documented in this
article.
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