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7.1 Introduction

Materials informatics requires large repositories of materials data to identify
trends in and correlations between materials properties, as well as for training
machine learning models. Such patterns lead to the formulation of descriptors
that guide rationalmaterials design. Generating large databases of computational
materials properties requires robust, integrated, automated frameworks [1].
Built-in error correction and standardized parameter sets enable the production
and analysis of data without direct intervention from human researchers.
Current examples of such frameworks include Automatic FLOW (AFLOW)
[2–10], Materials Project [11–14], Open QuantumMaterials Database (OQMD)
[15–17], the Computational Materials Repository [18] and its associated
scripting interface Atomic Simulation Environment (ASE) [19], Automated
Interactive Infrastructure and Database for Computational Science (AiiDA)
[20–22], and the Open Materials Database at httk.openmaterialsdb.se
with its associated High-Throughput Toolkit (HTTK). Other computational
materials science resources include the aggregated repository maintained by
the Novel Materials Discovery (NoMaD) Laboratory [23], and the Theoretical
Crystallography Open Database (TCOD) [24]. For this data to be consumable
by automated machine learning algorithms, it must be organized in program-
matically accessible repositories [4, 5, 7, 11, 12, 15, 23]. |ese frameworks
also contain modules that combine and analyze data from various calculations
to predict complex thermomechanical phenomena, such as lattice thermal
conductivity and mechanical stability.
Computational strategies have already had success in predicting materials for

applications including photovoltaics [25], water splitters [26], carbon capture and
gas storage [27, 28], nuclear detection and scintillators [29–32], topological insu-
lators [33, 34], piezoelectrics [35, 36], thermoelectric materials [37–40], catal-
ysis [41], and battery cathode materials [42–44]. More recently, computational
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materials data has been combined with machine learning approaches to predict
electronic and thermomechanical properties [45, 46] and to identify supercon-
ducting materials [47]. Descriptors are also being constructed to describe the
formation of disordered materials and have recently been used to predict the
glass-forming ability (GFA) of binary alloy systems [48].|ese successes demon-
strate that accelerated materials design can be achieved by combining structured
data sets generated using autonomous computational methods with intelligently
formulated descriptors and machine learning.

7.2 Automated Computational Materials Design
Frameworks

Rapid generation of materials data relies on automated frameworks such as
AFLOW [2–6], Materials Project’s pymatgen [13] and atomate [14], OQMD
[15–17], ASE [19], and AiiDA [21].|e general automated worküow is illustrated
in Figure 7.1. |ese frameworks begin by creating the input ûles required by the
electronic structure codes that perform the quantum mechanical level calcula-
tions, where the initial geometry is generated by decorating structural prototypes
(Figure 7.1a,b). |ey execute and monitor these calculations, reading any error
messages written to the output ûles and diagnosing calculation failures. Depend-
ing on the nature of the errors, these frameworks are equipped with a catalog of
prescribed solutions – enabling them to adjust the appropriate parameters and
restart the calculations (Figure 7.1c). At the end of a successful calculation, the
frameworks parse the output ûles to extract the relevant materials data such as
total energy, electronic bandgap, and relaxed cell volume. Finally, the calculated
properties are organized and formatted for entry into machine-accessible,
searchable, and sortable databases.
In addition to running and managing the quantum mechanical level calcula-

tions, the frameworks alsomaintain a broad selection of post-processing libraries
for extracting additional properties, such as calculating X-ray diffraction (XRD)
spectra from relaxed atomic coordinates, and the formation enthalpies for the
convex hull analysis to identify stable compounds (Figure 7.1d). Results from
calculations of distorted structures can be combined to calculate thermal and
elastic properties [2, 49–51], and results from different compositions and struc-
tural phases can be amalgamated to generate thermodynamic phase diagrams.

7.2.1 Generating and Using Databases for Materials Discovery

A major aim of high-throughput computational materials science is to identify
new, thermodynamically stable compounds. |is requires the generation of new
materials structures, which have not been previously reported in the literature, to
populate the databases.|e accuracy of analyses involving sets of structures, such
as that used to determine thermodynamic stability, is contingent on sufficient
exploration of the full range of possibilities. |erefore, autonomous materials
design frameworks such as AFLOW use crystallographic prototypes to generate
new materials entries consistently and reproducibly.
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Figure 7.1 Computational materials data generation workflow. (a) Crystallographic proto-

types are extracted from databases such as the ICSD or the NRL crystal structure library, or are

generated by enumeration algorithms. The illustrated examples are for the rocksalt,

zincblende, wurtzite, Heusler, inverse Heusler, and half-Heusler structures. (b) New candidate

materials are generated by decorating the atomic sites with different elements. (c) Automated

DFT calculations are used to optimize the geometric structure and calculate energetic, elec-

tronic, thermal, and elastic properties. Calculations are monitored to detect errors. The input

parameters are adjusted to compensate for the problem, and the calculation is rerun. Results

are formatted and added to an online data repository to facilitate programmatic access.

(d) Calculated data is used to plot the convex hull phase diagrams for each alloy system to

identify stable compounds.

Crystallographic prototypes are the basic building blocks used to generate the
wide range of materials entries involved in computational materials discovery.
|ese prototypes are based on (i) structures commonly observed in nature [52,
53], such as the rocksalt, zincblende, wurtzite, or Heusler structures illustrated
in Figure 7.1b, as well as (ii) hypothetical structures, such as those enumerated by
the methods described in Refs. [54, 55].|e AFLOWLibrary of Crystallographic
Prototypes [53] is also available online at aüow.org/CrystalDatabase/, where
users can choose from hundreds of crystal prototypes with adjustable param-
eters, which can be decorated to generate new input structures for materials
science calculations.
New materials are then generated by decorating the various atomic sites in the

crystallographic prototype with different elements. |ese decorated prototypes
serve as the structural input for ab initio calculations. A full relaxation of the
geometries and energy determination follows, from which phase diagrams for
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stability analyses can be constructed.|e resulting materials data are then stored
in an online data repository for future consideration.
|e phase diagram of a given alloy system can be approximated by considering

the low-temperature limit in which the behavior of the system is dictated by the
ground state [56, 57]. In compositional space, the lower-half convex hull deûnes
the minimum energy surface and the ground-state conûgurations of the system.
All non-ground-state stoichiometries are unstable, with the decomposition
described by the hull facet directly below it. In the case of a binary system, the
facet is a tie line as illustrated in Figure 7.2a.|e energy gained from this decom-
position is geometrically represented by the (vertical) distance of the compound
from the facet and quantiûes the excitation energy involved in forming this
compound. While the minimum energy surface changes at ûnite temperature

(b)

(a)
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Figure 7.2 Convex hull phase diagrams for multicomponent alloys systems. (a) Schematic

illustrating construction of convex hull for a general binary alloy system AxB1−x . Ground-state
structures are depicted as red points, with the minimum energy surface outlined with blue

lines. The minimum energy surface is formed by connecting the lowest-energy structures with

tie lines that form a convex hull. Unstable structures are shown in green, with the

decomposition reaction indicated by orange arrows and the decomposition energy indicated

in purple. (b) Example ternary convex hulls as generated by AFLOW.
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(favoring disordered structures), the T = 0 K excitation energy serves as a
reasonable descriptor for relative thermodynamic stability [58]. |is analysis
generates valuable information such as ground-state structures, excitation ener-
gies, and phase coexistence for storage in the online data repository.|is stability
data can be visualized and displayed by online modules, such as those developed
by AFLOW [58], theMaterials Project [59], and the OQMD [16, 60]. An example
visualization from AFLOW is shown in Figure 7.2b.
Convex hull phase diagrams have been used to discover new thermodynami-

cally stable compounds in a wide range of alloy systems, including hafnium [61,
62], rhodium [63], rhenium [64], ruthenium [65], and technetium [66] with vari-
ous transitionmetals, as well as the Co–Pt system [67]. Magnesium alloy systems
such as the lightweight Li–Mg system [68] and 34 other Mg-based systems [69]
have also been investigated.|is approach has also been used to calculate the sol-
ubility of elements in titaniumalloys [70], to study the effect of hydrogen on phase
separation in iron–vanadium [71], and to ûnd new superhard tungsten nitride
compounds [72]. |e data has been employed to generate structure maps for
hcp metals [73], as well as to search for new stable compounds with the Pt8Ti
phase [74] and with the L11 and L13 crystal structures [75]. Note that even if
a structure does not lie on the ground-state convex hull, this does not rule out
its existence. It may be synthesizable under speciûc temperature and pressure
conditions and then be metastable under ambient conditions.

7.2.2 Standardized Protocols for Automated Data Generation

Standard calculation protocols and parameters sets [6] are essential to the iden-
tiûcation of trends and correlations among materials properties. |e workhorse
method for calculating quantum mechanically resolved materials properties
is density f unctional theory (DFT). DFT is based on the Hohenberg–Kohn
theorem [76], which proves that for a ground-state system, the potential energy
is a unique functional of the density: V (r⃗) = V (ÿ(r⃗)). |is allows for the charge
density ÿ(r⃗) to be used as the central variable for the calculations rather than the
many-body wavefunction Ψ(r⃗1, r⃗2,… , r⃗N ), dramatically reducing the number of
degrees of freedom in the calculation.
|e Kohn–Sham equations [77] map the n coupled equations for the system of

n interacting particles onto a system of n independent equations for n noninter-
acting particles:

[
−
ℏ2

2m
∇2 + Vs(r⃗)

]
ÿi(r⃗) = ÿiÿi(r⃗) (7.1)

where ÿi(r⃗) are the noninteracting Kohn–Sham eigenfunctions and ÿi are their
eigenenergies. Vs(r⃗) is the Kohn–Sham potential:

Vs(r⃗) = V (r⃗) + ∫ e2
ÿs(r⃗

′)

|r⃗ − r⃗′|
d3r⃗′ + VXC[ÿs(r⃗)] (7.2)

where V (r⃗) is the external potential (which includes inüuences of the nuclei,
applied ûelds, and the core electrons when pseudopotentials are used),
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the second term is the direct Coulomb potential, and VXC[ÿs(r⃗)] is the

exchange–correlation term.

|e mapping onto a system of n noninteracting particles comes at the cost

of introducing the exchange–correlation potential VXC[ÿs(r⃗)], the exact form

of which is unknown and must be approximated. |e simplest approximation

is the local density approximation (LDA) [78], in which the magnitude of the

exchange–correlation energy at a particular point in space is assumed to be

proportional to the magnitude of the density at that point in space. Despite its

simplicity, LDA produces realistic results for atomic structure, elastic, and vibra-

tional properties for a wide range of systems. However, it tends to overestimate

the binding energies of materials, even putting crystal bulk phases in the wrong

energetic order [79]. Beyond LDA is the generalized gradient approximation

(GGA), in which the exchange–correlation term is a functional of the charge

density and its gradient at each point in space. |ere are several forms of GGA

including those developed by Perdew, Burke, and Ernzerhof (PBE, [80]) or by

Lee, Yang, and Parr (LYP, [81]). A more recent development is the meta-GGA

strongly constrained and appropriately normed (SCAN) functional [82], which

satisûes all 17 known exact constraints on exchange–correlation functionals.

|e major limitations of LDA and GGA include their inability to adequately

describe systems with strongly correlated or localized electrons, due to the local

and semilocal nature of the functionals. Treatments include the Hubbard U cor-

rections [83, 84], self-interaction corrections [78], and hybrid functionals such

as Becke’s three-parameter modiûcation of LYP (B3LYP, [85]) and that of Heyd,

Scuseria, and Ernzerhof (HSE, [86]).

Within the context of ab initio structure prediction calculations, GGA-PBE is

the usual standard since it tends to produce accurate geometries and lattice con-

stants [56]. For accounting for strong correlation effects, theDFT+Umethod [83,

84] is often favored in large-scale automated database generation due to its low

computational overhead. However, the traditional DFT+U procedure requires

the addition of an empirical factor to the potential [83, 84]. Recently, methods

have been implemented to calculate the U parameter self-consistently from ûrst

principles, such as the ACBN0 functional [87].

DFT also suffers from an inadequate description of excited/unoccupied states,

as the theory is fundamentally based on the ground state. Extensions for describ-

ing excited states include time-dependent density functional theory (TDDFT)

[88] and the GW correction [89]. However, these methods are typically much

more expensive than standard DFT and are not generally considered for large-

scale database generation.

At the technical implementation level, there are many DFT software packages

available, including VASP [90–93], QuantumESPRESSO [94, 95], ABINIT

[96, 97], FHI–AIMS [98], SIESTA [99], and GAUSSIAN [100]. |ese codes are

generally distinguished by the choice of basis set. |ere are two principle types

of basis sets: plane waves, which take the form ÿ(r⃗) =
∑

eik⃗⋅r⃗ , and local orbitals,

formed by a sum over functions ÿa(r⃗) localized at particular points in space, such

as Gaussians or numerical atomic orbitals [101]. Plane-wave-based packages

include VASP, QuantumESPRESSO and ABINIT, and are generally better
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suited to periodic systems such as bulk inorganic materials. Local orbital-based
packages include FHI–AIMS, SIESTA and GAUSSIAN, and are generally
better suited to nonperiodic systems such as organic molecules. In the ûeld of
automated computational materials science, plane-wave codes such as VASP
are generally preferred: it is straightforward to automatically and systematically
generate well-converged basis sets since there is only a single parameter to
adjust, namely, the cutoff energy determining the number of plane waves in the
basis set. Local orbital basis sets tend to have far more independently adjustable
degrees of freedom, such as the number of basis orbitals per atomic orbital
as well as their respective cutoff radii, making the automated generation of
reliable basis sets more difficult. |erefore, a typical standardized protocol
for automated materials science calculations [6] relies on the VASP software
package with a basis set cutoff energy higher than that recommended by the
VASP potential ûles, in combination with the PBE formulation of GGA.
Finally, it is necessary to automate the generation of the reciprocallattice

k-point grid and pathways in reciprocal space used for the calculation of forces,
energies, and the electronic band structure. In general, DFT codes use standard-
ized methods such as the Monkhorst–Pack scheme [102] to generate k-point
grids, although optimized grids have been calculated for different lattice types
and are available online [103]. Optimizing k-point grid density is a computation-
ally expensive process that is difficult to automate, so instead standardized grid
densities based on the concept of <k-points per reciprocal atom= (KPPRA) are
used. |e KPPRA value is chosen to be sufficiently large to ensure convergence
for all systems. Typical recommended values used for KPPRA range from 6000
to 10 000 [6], so that a material with two atoms in the calculation cell will
have a k-point mesh of at least 3000–5000 points. Standardized directions in
reciprocal space have also been deûned for the calculation of the band structure
as illustrated in Figure 7.3 [3]. |ese paths are optimized to include all of the
high-symmetry points of the lattice.

7.3 Integrated Calculation of Materials Properties

Automated frameworks such as AFLOW combine the computational analysis
of properties including symmetry, electronic structure, elasticity, and thermal
behavior into integrated worküows. Crystal symmetry information is used to
ûnd the primitive cell to reduce the size of DFT calculations, to determine the
appropriate paths in reciprocal space for electronic band structure calculations
(see Figure 7.3, [3]), and to determine the set of inequivalent distortions for
phonon and elasticity calculations. |ermal and elastic properties of materials
are important for predicting the thermodynamic and mechanical stability of
structural phases [104–107] and assessing their importance for a variety of appli-
cations. Elastic properties such as the shear and bulk moduli are important for
predicting the hardness of materials [108, 109] and thus their resistance to wear
and distortion. Elasticity tensors can be used to predict the properties of com-
posite materials [110, 111]. |ey are also important in geophysics for modeling
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the propagation of seismic waves in order to investigate the mineral composition
of geological formations [105, 112, 113]. |e lattice thermal conductivity (ÿL)

is a crucial design parameter in a wide range of important technologies, such
as the development of new thermoelectric materials [39, 114, 115], heat sink
materials for thermal management in electronic devices [116], and rewritable
phase-change memories [117]. High thermal conductivity materials, which
typically have a zincblende or diamond-like structure, are essential in micro-
electronic and nanoelectronic devices for achieving efficient heat removal [118]
and have been intensively studied for the past few decades [119]. Low thermal
conductivity materials constitute the basis of a new generation of thermoelectric
materials and thermal barrier coatings [120].
|e calculation of thermal and elastic properties offers an excellent example

of the power of integrated computational materials design frameworks. With a
single input ûle, these frameworks can automatically set up and run calculations
of different distorted cells, and combine the resulting energies and forces to cal-
culate thermal and mechanical properties.

7.3.1 Autonomous Symmetry Analysis

Critical to any analysis of crystals is the accurate determination of the symmetry
proûle. For example, symmetry serves to (i) validate the forms of the elastic con-
stants and compliance tensors, where the crystal symmetry dictates equivalence
or absence of speciûc tensor elements [50, 106, 121], and (ii) reduce the number
of ab initio calculations needed for phonon calculations, where, in the case of
the ûnite displacement method, equivalent atoms and distortion directions are
identiûed through factor group and site symmetry analyses [122].
Autonomous worküows for elasticity and vibrational characterizations

therefore require a correspondingly robust symmetry analysis. Unfortunately,
standard symmetry packages [123–126], catering to different objectives,
depend on tolerance-tuning to overcome numerical instabilities and atypical
data – emanating from ûnite temperature measurements and uncertainty in
experimentally reported observations. |ese tolerances are responsible for
validating mappings and identifying isometries, such as the n-fold operator
depicted in Figure 7.4a. Some standard packages deûne separate tolerances
for space, angle [126], and even operation type [123–125] (e.g. rotation vs.
inversion). Each parameter introduces a factorial expansion of unique inputs,
which can result in distinct symmetry proûles as illustrated in Figure 7.4b. By
varying the spatial tolerance ÿ, four different space groups can be observed for
AgBr (ICSD #56551 [www.aüow.org/material.php?id=56551]), if one is found at
all. Gaps in the range, where no consistent symmetry proûle can be resolved, are
particularly problematic in automated frameworks, triggering critical failures in
subsequent analyses.
Cell shape can also complicate mapping determinations. Anisotropies in the

cell, such as skewness of lattice vectors, translate to distortions of fractional
and reciprocal spaces. A uniform tolerance sphere in Cartesian space, inside
which points are considered mapped, generally warps to a sheared spheroid, as
depicted in Figure 7.4c. Hence, distances in these spaces are direction dependent,
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Figure 7.4 Challenges in autonomous symmetry analysis. (a) An illustration of a general n-fold
symmetry operation. (b) Possible space group determinations with mapping tolerance ÿ for
AgBr (ICSD #56551). (c) Warping of mapping tolerance sphere with a transformation from

Cartesian to fractional basis.

compromising the integrity of rapid minimum-image determinations [127] and

generally warranting prohibitively expensive algorithms [128]. Such failures can

result in incommensurate symmetry proûles, where the real space lattice proûle

(e.g. bcc) does not match that of the reciprocal space (fcc).

|e new AFLOW-SYMmodule [128] within AFLOW offers careful treatment

of tolerances, with extensive validation schemes, to mitigate the aforementioned

challenges. Although a user-deûned tolerance input is still available, AFLOW

defaults to one of two predeûned tolerances, namely, tight (standard) and

loose. Should any discrepancies occur, these defaults are the starting values

of a large tolerance scan, as shown in Figure 7.4b. A number of validation

schemes have been incorporated to catch such discrepancies. |ese checks are

consistent with crystallographic group theory principles, validating operation

types and cardinalities [129]. From considerations of different extreme cell

shapes, a heuristic threshold has been deûned to classify scenarios where

mapping failures are likely to occur – based on skewness and mapping tolerance.

When benchmarked against standard packages for over 54 000 structures

in the Inorganic Crystal Structure Database, AFLOW-SYM consistently

resolves the symmetry characterization most compatible with experimental

observations [128].
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Along with accuracy, AFLOW-SYM delivers a wealth of symmetry proper-
ties and representations to satisfy injection into any analysis or worküow. |e
full set of operators – including that of the point, factor, crystallographic point,
space group, and site symmetries – are provided in matrix, axis–angle, matrix
generator, and quaternion representations in both Cartesian and fractional coor-
dinates. A span of characterizations, organized by degree of symmetry-breaking,
are available, including those of the lattice, superlattice, crystal, and crystal spin.
Space group and Wyckoff positions are also resolved. |e full data set is made
available in both plain text and JSON formats.

7.3.2 Elastic Constants

|ere are two main methods for calculating the elastic constants based on the
response of either the stress tensor or the total energy to a set of applied strains
[50, 51, 130–132]. Automated implementations of these methods are included
in the AFLOW (referred to as the Automatic Elasticity Library, AEL [51]) and
Materials Project frameworks [50].
To calculate the elastic tensor, several different normal and shear strains should

be applied to the calculation cell in each independent direction [50, 51], as illus-
trated in Figure 7.5a. |e resulting stress tensor elements ÿij, obtained from the
directional forces on the cell calculatedwithDFT, can then be ûtted to the applied
strains ÿij to obtain the corresponding elastic constants cij in the form of the stiff-
ness tensor:

»¼¼¼¼¼¼½

ÿ11
ÿ22
ÿ33
ÿ23
ÿ13
ÿ12

¾¿¿¿¿¿¿À

=

»¼¼¼¼¼¼½

c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66

¾¿¿¿¿¿¿À

»¼¼¼¼¼¼½

ÿ11
ÿ22
ÿ33
2ÿ23
2ÿ13
2ÿ12

¾¿¿¿¿¿¿À

(7.3)

written in the 6 × 6 Voigt notation using the mapping [105] 11 → 1, 22 → 2,
33 → 3, 23 → 4, 13 → 5, and 12 → 6. Symmetry analysis such as that provided
by AFLOW-SYM can be used to reduce the number of required calculations by
up to a factor of 3 in the case of cubic systems, as well as for veriûcation of the
computed tensors [106].
|e elastic constants can then be used in the Voigt or Reuss approximations,

which for polycrystalline materials correspond to assuming uniform strain and
uniform stress, respectively, and give the upper and lower bounds on the elastic
moduli. In the Voigt approximation, the bulk modulus is given by

BVoigt =
1

9
[(c11 + c22 + c33) + 2(c12 + c23 + c13)] (7.4)

and the shear modulus is given by

GVoigt =
1

15
[(c11 + c22 + c33) − (c12 + c23 + c13)]

+
1

5
(c44 + c55 + c66) (7.5)
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Figure 7.5 (a) AEL applies a set of independent normal and shear strains to the crystal structure to obtain the elastic constants. (b) AGL applies a set of

isotropic strains to the unit cell to obtain energy vs. volume data, which is fitted by a polynomial in order to calculate the bulk modulus as a function of

volume, BS(V). BS(V) is then used to calculate the Debye temperature as a function of volume and thus the vibrational free energy as a function of temperature.

The Gibbs free energy as a function of volume is then minimized for each pressure and temperature point to obtain the equilibrium volume and other

thermomechanical properties. (c) APL obtains the harmonic interatomic force constants (IFCs) from supercell calculations where inequivalent atoms are

displaced in inequivalent directions, and then the changes in the forces on the other atoms are calculated. The IFCs are then used to construct the dynamical

matrix, which is diagonalized to obtain the phonon eigenmodes. AAPL calculates three-phonon scattering effects by performing supercell calculations where

pairs of inequivalent atoms are displaced in inequivalent directions, and the changes in the forces on the other atoms in the supercell are calculated to obtain

the third-order anharmonic IFCs.
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|e Reuss approximation uses the elements of the compliance tensor sij (the
inverse of the stiffness tensor) to calculate the bulk modulus

1

BReuss

= (s11 + s22 + s33) + 2(s12 + s23 + s13) (7.6)

while the shear modulus is given by

15

GReuss

= 4(s11 + s22 + s33) − 4(s12 + s23 + s13)

+ 3(s44 + s55 + s66) (7.7)

|e two approximations are combined to obtain the Voigt–Reuss–Hill (VRH)
averages [133] for the bulk modulus

BVRH =
BVoigt + BReuss

2
(7.8)

and the shear modulus

GVRH =
GVoigt + GReuss

2
(7.9)

|e Poisson ratio ÿ is then given by

ÿ =
3BVRH − 2GVRH

6BVRH + 2GVRH

(7.10)

7.3.3 Quasi-harmonic Debye–Grüneisen Model

|ermal properties can be predicted by several different methods, such as the
quasi-harmonic Debye–Grüneisen model, which uses volume as a proxy for
temperature [49], and by calculating the phonon dispersion from the dynamical
matrix of IFCs [122].
|e energy vs. volume data from a set of simple static primitive cell calcu-

lations can be ûtted to a quasi-harmonic Debye–Grüneisen model such as the
<GIBBS= method [49, 51, 134] to obtain thermal properties, as demonstrated in
Figure 7.5b. |is method has been implemented in the AFLOW framework in
the form of the Automatic GIBBS Library (AGL).
First, the adiabatic bulk modulus BS as a function of cell volume V is obtained

either (i) by ûtting the EDFT(V ) data to an equation of state (EOS) or (ii) by taking
the numerical second derivative of a polynomial ût of EDFT(V ), which gives the
static bulk modulus Bstatic:

BS(V ) ≈ Bstatic(x⃗) ≈ Bstatic(x⃗(V ))

= V

(
ÿ2E(x⃗(V ))

ÿV 2

)
= V

(
ÿ2E(V )

ÿV 2

)
(7.11)

|ree different empirical EOS have been implemented within AGL: the
Birch–Murnaghan EOS [105, 134, 135], the Vinet EOS [134, 136], and the
Baonza–Cáceres–Núñez spinodal EOS [134, 137]. However, these EOS often
introduce an additional source of error into the results since they are calibrated



194 7 Automated Computation of Materials Properties

for speciûc sets of systems and pressure–temperature regimes. Recent studies
have found the numerical calculation of B to be just as, if not more, reliable
as the empirical EOS [51]. |erefore, the numerical method is the default for
the automated generation of thermomechanical properties for the AFLOW
database.
|e bulk modulus can then be used to calculate the Debye temperature as a

function of volume:

ÿD(V ) =
ℏ

kB
[6ÿ2V 1∕2n]1∕3f (ÿ)

√
BS

M
(7.12)

where M is the mass of the unit cell and f (ÿ) is a function of the Poisson
ratio ÿ:

f (ÿ) =

{
3

[
2
(
2

3
⋅

1 + ÿ

1 − 2ÿ

)3∕2

+
(
1

3
⋅

1 + ÿ

1 − ÿ

)3∕2
]−1} 1

3

(7.13)

|e integration offered by the AFLOW framework allows the value of ÿ required
by this expression to be obtained directly and automatically from the AEL calcu-
lation (Eq. (7.10)).
To obtain the equilibrium volume at a particular (p,T) point, the Gibbs free

energy is minimized with respect to volume. In the quasi-harmonic approx-
imation (QHA), the vibrational component of the free energy, Fvib(x⃗;T), is
given by

Fvib(x⃗;T) = ∫
∞

0

[
ℏÿ

2
+

1

ÿ
log(1 − e−ÿℏÿ)

]
g(x⃗;ÿ)dÿ (7.14)

where ÿ =
(
kBT

)−1
and g(x⃗;ÿ) is the phonon density of states, which depends on

the system geometry x⃗. In the Debye–Grüneisen model, Fvib can be written as

Fvib(ÿD;T) =
n

ÿ

[
9

8

ÿD
T

+ 3 log
(
1 − e−ÿD∕T

)
− D

(
ÿD
T

)]
(7.15)

where D(ÿD∕T) is the Debye integral

D
(
ÿD∕T

)
= 3

(
T

ÿD

)3

∫
ÿD∕T

0

x3

ex − 1
dx (7.16)

Next, the full Gibbs free energy as a function of temperature and pressure is cal-
culated by

G(V ; p,T) = EDFT(V ) + Fvib(ÿD(V );T) + pV (7.17)

and ûtted by a polynomial in V , the minimum of which gives the equilibrium
volume, Veq. Note that the symbol G is used for shear modulus, while G is used
for the Gibbs free energy.
ÿD is then determined from its value atVeq, while other thermal properties such

as the Grüneisen parameter can be calculated using the expression

ÿ = −
V

ÿD

ÿÿD(V )

ÿV
(7.18)
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|e speciûc heat capacity at constant volume can be obtained using the
expression

CV,vib = 3nkB

[
4D

(
ÿD
T

)
−

3ÿD∕T

eÿD∕T − 1

]
(7.19)

while the speciûc heat capacity at constant pressure is given by

Cp,vib = CV,vib(1 + ÿÿT) (7.20)

where ÿ is the coefficient of thermal expansion

ÿ =
ÿCV,vib

BTV
(7.21)

|e lattice thermal conductivity can be calculated using the Leibfried–
Schlömann equation [138–140] using the Debye temperature and the Grüneisen
parameter:

ÿL(ÿa) =
0.849 × 3

3
√
4

20ÿ3(1 − 0.514ÿ−1a + 0.228ÿ−2a )

×

(
kBÿa

ℏ

)2
kBmV

1

3

ℏÿ2a
(7.22)

where V is the volume of the unit cell andm is the average atomic mass, while ÿa
and ÿa are the acoustic Debye temperature and Grüneisen parameter obtained by
only considering the acoustic modes, based on the assumption that the optical
phonon modes in crystals do not contribute to heat transport [139, 140]. ÿa and
ÿa can be derived directly from the phonon DOS by only considering the acoustic
modes [139, 141]. ÿa can also be estimated from the traditional Debye temper-

ature ÿD using the expression ÿa = ÿDn
−

1

3 [139, 140]. |ere is no simple way to
extract ÿa from the traditional Grüneisen parameter, so the approximation ÿa = ÿ

is used in the AEL–AGL approach to calculating the thermal conductivity.
|e thermal conductivity at temperatures other than ÿa is estimated using the

expression [139, 140, 142] ÿL(T) = ÿL(ÿa)ÿa∕T .

7.3.4 Harmonic Phonons

|ermal properties can also be obtained by directly calculating the phonon dis-
persion from the dynamical matrix of IFCs.|e approach is implemented within
the AFLOW Phonon Library (APL) [2]. |e IFCs are determined from a set of
supercell calculations in which the atoms are displaced from their equilibrium
positions [122] as shown in Figure 7.5c.
|e IFCs derive from a Taylor expansion of the potential energy,V , of the crys-

tal about the atoms’ equilibrium positions:

V = V |r⃗(i,t)=0,∀i +
∑
i,ÿ

ÿV

ÿr(i, t)ÿ

||||r⃗(i,t)=0,∀ir(i, t)
ÿ

+
1

2

∑
i,ÿ,
j,ÿ

ÿ2V

ÿr(i, t)ÿÿr(j, t)ÿ

||||r⃗(i,t)=0,∀i
r(i, t)ÿr(j, t)ÿ

+ · · · (7.23)
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where r(i, t)ÿ is the ÿ-Cartesian component (ÿ = x, y, z) of the time-dependent
atomic displacement r⃗(t) of the ith atom about its equilibrium position,
V |r⃗(i,t)=0,∀i is the potential energy of the crystal in its equilibrium conûg-
uration, ÿV∕ÿr(i, t)ÿ|r⃗(i,t)=0,∀i is the negative of the force acting in the ÿ

direction on atom i in the equilibrium conûguration (zero by deûnition), and
ÿ2V∕ÿr(i, t)ÿÿr(j, t)ÿ|r⃗(i,t)=0,∀i constitute the IFC ÿ(i, j)ÿ,ÿ . To ûrst approximation,
ÿ(i, j)ÿ,ÿ is the negative of the force exerted in the ÿ direction on atom iwhen atom
j is displaced in the ÿ directionwith all other atomsmaintaining their equilibrium
positions, as shown in Figure 7.5c. All higher-order terms are neglected in the
harmonic approximation.
Correspondingly, the equations of motion of the lattice are

M(i)r̈(i, t)ÿ = −
∑
j,ÿ

ÿ(i, j)ÿ,ÿr(j, t)
ÿ ∀i, ÿ (7.24)

and can be solved by a plane-wave solution of the form

r(i, t)ÿ =
v(i)ÿ√
M(i)

ei(q⃗⋅R⃗l−ÿt) (7.25)

where v(i)ÿ form the phonon eigenvectors (polarization vector),M(i) is the mass

of the ith atom, q⃗ is the wave vector, R⃗l is the position of lattice point l, and ÿ

form the phonon eigenvalues (frequencies). |e approach is nearly identical to
that taken for electrons in a periodic potential (Bloch waves) [143]. Plugging this
solution into the equations of motion (Eq. (7.24)) yields the following set of linear
equations:

ÿ2v(i)ÿ =
∑
j,ÿ

D
ÿ,ÿ

i,j
(q⃗)v(j)ÿ ∀i, ÿ (7.26)

where the dynamical matrix Dÿ,ÿ

i,j
(q⃗) is deûned as

D
ÿ,ÿ

i,j
(q⃗) =

∑
l

ÿ(i, j)ÿ,ÿ√
M(i)M(j)

e−iq⃗⋅(R⃗l−R⃗0) (7.27)

|e problem can be equivalently represented by a standard eigenvalue equation:

ÿ2
[
v⃗
]
=
[
D(q⃗)

] [
v⃗
]

(7.28)

where the dynamical matrix and phonon eigenvectors have dimensions (3na ×
3na) and (3na × 1), respectively, and na is the number of atoms in the cell. Hence,
Eq. (7.28) has 3na solutions/modes referred to as branches indexed by ÿ. In prac-
tice, Eq. (7.28) is solved for discrete sets of q⃗-points to compute the phonon den-
sity of states (grid over all possible q⃗) and dispersion (along the high-symmetry
paths of the lattice [3]).|us, the phonon eigenvalues and eigenvectors are appro-
priately denoted ÿÿ(q⃗) and v⃗ÿ(q⃗), respectively.
Similar to the electronic Hamiltonian, the dynamical matrix is Hermitian, i.e.

D(q⃗) = D∗(q⃗). |us ÿ2
ÿ
(q⃗)must also be real, so ÿÿ(q⃗) can either be real or purely

imaginary. However, a purely imaginary frequency corresponds to vibrational
motion of the lattice that increases exponentially in time. |erefore, imaginary
frequencies, or those corresponding to soft modes, indicate the structure is
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dynamically unstable. In the case of a symmetric, high-temperature phase,
soft modes suggest there exists a lower symmetry structure stable at T = 0 K.
Temperature effects on phonon frequencies can be modeled with

ÿ̃2
ÿ(q⃗,T) = ÿ2

ÿ(q⃗,T = 0) + ÿT (7.29)

where ÿ is positive in general. |e two structures, the symmetric and the sta-
ble, differ by the distortion corresponding to this <frozen= (non-vibrating) mode.
Upon heating, the temperature term increases until the frequency reaches zero,
and a phase transition occurs from the stable structure to the symmetric [144].
In practice, soft modes [145] may indicate the following: (i) the structure is

dynamically unstable at T ; (ii) the symmetry of the structure is lower than that
considered, perhaps due to magnetism; (iii) strong electronic correlations, or (iv)
long-range interactions play a signiûcant role, and a larger supercell should be
considered.
With the phonon density of states computed, the following thermal properties

can be calculated: the internal vibrational energy

Uvib(x⃗,T) = ∫
∞

0

(
1

2
+

1

e(ÿℏÿ) − 1

)
ℏÿg(x⃗;ÿ)dÿ (7.30)

the vibrational component of the free energy Fvib(x⃗;T) (Eq. (7.14)), the vibrational
entropy

Svib(x⃗,T) =
Uvib(x⃗,T) − Fvib(x⃗;T)

T
(7.31)

and the isochoric speciûc heat

CV,vib(x⃗,T) = ∫
∞

0

kB(ÿℏÿ)
2g(x⃗;ÿ)

(1 − e−(ÿℏÿ))(e(ÿℏÿ) − 1)
dÿ (7.32)

7.3.5 Quasi-harmonic Phonons

|e harmonic approximation does not describe phonon–phonon scattering
and so cannot be used to calculate properties such as thermal conductivity
or thermal expansion. To obtain these properties, either the Quasi-Harmonic
Approximation (QHA) can be used, or a full calculation of the higher-order
anharmonic IFCs can be performed. QHA is the less computationally demanding
of these twomethods and compares harmonic calculations of phonon properties
at different volumes to predict anharmonic properties. |e different volume
calculations can be in the form of harmonic phonon calculations as described
above [146, 147] or simple static primitive cell calculations [49, 134]. QHA
is implemented within APL and referred to as QHA-APL [49]. In the case of
the quasi-harmonic phonon calculations, the anharmonicity of the system is
described by the mode-resolved Grüneisen parameters, which are given by the
change in the phonon frequencies as a function of volume:

ÿÿ(q⃗) = −
V

ÿÿ(q⃗)

ÿÿÿ(q⃗)

ÿV
(7.33)
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where ÿÿ(q⃗) is the parameter for thewave vector q⃗ and theÿthmode of the phonon
dispersion.|e average of the ÿÿ(q⃗) values, weighted by the speciûc heat capacity
of each mode CV,ÿ(q⃗), gives the average Gruneisen parameter:

ÿ =

∑
ÿ,q⃗ÿÿ(q⃗)CV,ÿ(q⃗)

CV

(7.34)

|e speciûc heat capacity, Debye temperature, and Grüneisen parameter can
then be combined to calculate other properties such as the speciûc heat capacity
at constant pressure Cp, the thermal coefficient of expansion ÿ, and the lattice
thermal conductivity ÿL [147], using similar expressions to those described in
Section 7.3.3.

7.3.6 Anharmonic Phonons

|e full calculation of the anharmonic IFCs requires performing supercell
calculations in which pairs of inequivalent atoms are displaced in all pairs of
inequivalent directions [148–157] as illustrated in Figure 7.5c. |e third-order
anharmonic IFCs can then be obtained by calculating the change in the forces on
all of the other atoms due to these displacements. |is method has been imple-
mented in the form of a fully automated integrated worküow in the AFLOW
framework, where it is referred to as the AFLOW Anharmonic Phonon Library
(AAPL) [157].|is approach can provide very accurate results for the lattice ther-
mal conductivity when combined with accurate electronic structure methods
[157] but quickly becomes very expensive for systems with multiple inequivalent
atoms or low symmetry.|erefore, simpler methods such as the quasi-harmonic
Debye model tend to be used for initial rapid screening [49, 51], while the more
accurate and expensive methods are used for characterizing systems that are
promising candidates for speciûc engineering applications.

7.4 Online Data Repositories

Rendering the massive quantities of data generated using automated ab initio

frameworks available for other researchers requires going beyond the conven-
tional methods for the dissemination of scientiûc results in the form of journal
articles. Instead, this data is typically made available in online data repositories,
which can usually be accessed bothmanually via interactiveWeb portals and pro-
grammatically via an application programming interface (API).

7.4.1 Computational Materials Data Web Portals

Most computational data repositories include an interactiveWeb portal front end
that enables manual data access. |eseWeb portals usually include online appli-
cations to facilitate data retrieval and analysis. |e front page of the AFLOW
data repository is displayed in Figure 7.6a.|emain features include a search bar
where information such as ICSD reference number, AFLOW unique identiûer
(AUID) or the chemical formula, can be entered in order to retrieve speciûcmate-
rials entries. Below are buttons linking to several different online applications
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(a)

(b)

(c)

Element
search
filters

Property
search
filters

Figure 7.6 (a) Front page of the AFLOW online data repository, highlighting the link to (b) the

AFLOW advanced search application, which facilitates complex search queries including

filtering by chemical composition and materials properties, and (c) the AFLOW interactive

convex hull generator, showing the 3D hull for the Pt–Sc–Zn ternary alloy system.

such as the advanced search functionality, convex hull phase diagram generators,

machine learning applications [45, 158, 159], and AFLOW-online data analysis

tools. |e link to the advanced search application is highlighted by the orange

square, and the application page is shown in Figure 7.6b. |e advanced search

application allows users to search for materials that contain (or exclude) speciûc

elements or groups of elements, and also to ûlter and sort the results by properties

such as electronic band structure energy gap (under the <Electronics= properties

ûlter group) and bulk modulus (under the <Mechanical= properties ûlter group).

|is allows users to identify candidate materials with suitable properties for spe-

ciûc applications.

Another example online application available on the AFLOW Web portal is

the convex hull phase diagram generator. |is application can be accessed by

clicking on the button highlighted by the orange square in Figure 7.6a, which

will bring up a periodic table allowing users to select two or three elements for

which they want to generate a convex hull. |e application will then access the

formation enthalpies and stoichiometries of the materials entries in the relevant

alloy systems and use this data to generate a two- or three-dimensional convex

hull phase diagram as depicted in Figure 7.6c.|is application is fully interactive,

allowing users to adjust the energy axis scale, rotate the diagram to view from

different directions, and select speciûc points to obtain more information on the

corresponding entries.
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7.4.2 Programmatically Accessible Online Repositories of Computed

Materials Properties

In order to use materials data in machine learning algorithms, it should be stored
in a structured online database and made programmatically accessible via a
representational state transfer API (REST API). Examples of online repositories
of materials data include AFLOW [4, 5], Materials Project [11], and OQMD [15].
|ere are also repositories that aggregate results from multiple sources such as
NoMaD [23] and Citrine [160].
REST APIs facilitate programmatic access to data repositories. Typical

databases such as AFLOWare organized in layers, with the top layer correspond-
ing to a project or catalog (e.g. binary alloys), the next layer corresponding to
data sets (e.g. all of the entries for a particular alloy system), and then the bottom
layer corresponding to speciûc materials entries, as illustrated in Figure 7.7a.
In the case of the AFLOW database, there are currently four different <pro-

jects,= namely, the <ICSD,= <LIB1,= <LIB2,= and <LIB3= projects, along with
three more under construction: <LIB4,= <LIB5,= and <LIB6.= |e <ICSD= project
contains calculated data for previously observed compounds [52], whereas the
other three projects contain calculated data for single elements, binary alloys,
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Figure 7.7 (a) The AFLOW database is organized as a multilayered system. (b) Example of an

AURL that enables direct programmatic access to specific materials entry properties in the

AFLOW database.
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and ternary alloys, respectively, and are constructed by decorating prototype
structures with combinations of different elements. Within <LIB2= and <LIB3,=
there are many different data sets, each corresponding to a speciûc binary or
ternary alloy system. Each entry in the set corresponds to a speciûc prototype
structure and stoichiometry. |e materials properties values for each of these
entries are encoded via keywords, and the data can be accessed via URLs
constructed from the different layer names and the appropriate keywords.
In the case of the AFLOW database, the location of each layer and entry is
identiûed by an AFLOW uniform resource locator (AURL) [5], which can be
converted to a URL providing the absolute path to a particular layer, entry, or
property. |e AURL takes the form server:AFLOWDATA/project/set/entry/?
keywords, for example, aüowlib.duke.edu:AFLOWDATA/LIB2_RAW/Cu_pvV_
sv/15/?energy_atom, where aüowlib.duke.edu is the Web address of the physical
server where the data is located, LIB2_RAW is the binary alloy project layer, Cu_
pvV_sv is the set containing the binary alloy system Cu–V, 15 is a speciûc entry
with the composition Cu3V in a tetragonal lattice, and energy_atom is the key-
word corresponding to the property of energy per atom in units of eV, as shown in
Figure 7.7b. Each AURL can be converted to aWeb URL by changing the <:= after
the server name to a </,= so that the AURL in Figure 7.7b would become the URL
aüowlib.duke.edu/AFLOWDATA/LIB2_RAW/Cu_pvV_sv/15/?energy_atom.
|is URL, if queried via a Web browser or using a UNIX utility such as wget,
returns the energy per atom in eV for entry 15 of the Cu–V binary alloy system.
In addition to the AURL, each entry in the AFLOW database is also associated

with an AUID [5], which is a unique hexadecimal (base 16) number constructed
from a checksum of the AFLOW output ûle for that entry. Since the AUID
for a particular entry can always be reconstructed by applying the checksum
procedure to the output ûle, it serves as a permanent, unique speciûer for each
calculation, irrespective of the current physical location of where the data are
stored. |is enables the retrieval of the results for a particular calculation from
different servers, allowing for the construction of a truly distributed database
that is robust against the failure or relocation of the physical hardware. Actual
database versions can be identiûed from the version of AFLOW used to parse
the calculation output ûles and post-process the results to generate the database
entry. |is information can be retrieved using the keyword aüowlib_version.
|e search and sort functions of the front-end portals can be combined

with the programmatic data access functionality of the REST API through
the implementation of a Search-API. |e AFLUX Search-API uses the LUX
language to enable the embedding of logical operators within URL query strings
[161]. For example, the energy per atom of every entry in the AFLOW repository
containing the element Cu or V, but not the element Ti, with an electronic
bandgap between 2 and 5 eV, can be retrieved using the command aüowlib.duke
.edu/search/API/?species((Cu:V),(&excl;Ti)),Egap(2*,*5),energy_atom. In this
AFLUX search query, the comma <,= represents the logical AND operation,
the colon <:= the logical OR operation, the exclamation mark <!= the logical
NOT operation, and the asterisk <*= the <loose= operation that deûnes a range
of values to search within. Note that by default AFLUX returns only the ûrst
64 entries matching the search query. |e number and set of entries can be
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controlled by appending the paging directive to the end of the search query as
follows: aüowlib.duke.edu/search/API/?species((Cu:V),(&excl;Ti)),Egap(2*,*5),
energy_atom,paging(0), where calling the paging directive with the argument
<0= instructs AFLUX to return all of the matching entries (note that this could
potentially be a large amount of data, depending on the search query). |e
AFLUX Search-API allows users to construct and retrieve customized data sets,
which they can feed into materials informatics machine learning packages to
identify trends and correlations for use in rational materials design.
|e use of APIs to provide programmatic access is being extended beyond

materials data retrieval, to enable the remote use of pretrained machine learn-
ing algorithms.|e AFLOW-ML API [159] facilitates access to the two machine
learningmodels that are also available online at aüow.org/aüow-ml [45, 158].|e
API allows users to submit structural data for the material of interest using a
utility such as cURL and then returns the results of the model’s predictions in
JSON format.|e programmatic access to machine learning predictions enables
the incorporation of machine learning into materials design worküows, allowing
for rapid prescreening to automatically select promising candidates for further
investigation.

7.5 Materials Applications

|e automated approach to computational materials science has been used to
accelerate the design of materials for structural applications such as metallic
glasses and superalloys, and for functional applications including thermo-
electrics, magnets, catalysts, batteries, photovoltaics, and superconductors.

7.5.1 Disordered Materials

Section 7.2 describes how the thermodynamic stability of ordered compounds
at zero temperature can be predicted from the convex hull phase diagrams gen-
erated using the formation enthalpies available in computational materials data
repositories such as AFLOW [2, 4–6]. At ûnite temperature, however, entropic
contributions due to thermally driven disorder play an important role and lead
to the formation of disordered materials such as metallic glasses and solid solu-
tions.|e thermodynamically favored phase at a given temperature and pressure
is the phase with the lowest Gibbs free energy. Since the entropy term in the
Gibbs free energy is multiplied by the temperature T , the entropic contribu-
tion to the Gibbs free energy becomes increasingly important at higher tem-
peratures. |e entropy of materials has two main components: the vibrational
entropy, Svib, which can be calculated from the phonon dispersion or the Debye
model as described in Section 7.3, and the conûguration entropy, Sconûg, due to
the disorder in the atomic positions or site occupations. Conûgurational entropy
originates from chemical disorder as in the case of high entropy alloys in which
all of the atoms are arranged on a regular lattice (but the speciûc lattice sites are
randomly occupied by different chemical species) or structural disorder as in the
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case of metallic glasses, where the atoms no longer occupy regular lattice sites,
resulting in an amorphous material.

7.5.1.1 High Entropy Materials

High entropy materials display structural order (i.e. all of the atoms are arranged
on a periodic crystal lattice) but chemical disorder (i.e. the actual occupation of
these lattice sites is random) [162].
In the ideal entropy limit in which the occupation of the atomic sites is

completely random, the conûguration entropy per atom is given by Sconûg =

kB
∑

ixiloge(xi) [162], where xi is the fractional composition of each species
component. Note that this expression increases with increasing numbers of
species and is also maximized when all of the values of xi are equal, i.e. for
equimolar compositions.
|e expression for the ideal entropy can be combined with calculations for

special quasirandom structures (SQS) [163], which are special structural conûgu-
rations where the radial correlation functions mimic those of a perfectly random
structure, to estimate the Gibbs free energy for high entropy alloys.|is can then
be used in conjunction with the energies of the ordered phases obtained from
computational materials data repositories such as AFLOW [2, 4–6] to generate
structural phase diagrams as a function of temperature and composition, pre-
dicting the phase transition boundaries between ordered compounds, phase sep-
aration regions, and single-phase solid solutions [107, 164, 165]. |e calculated
ordered structure energies in AFLOWcan also be used to train cluster expansion
models [166] to predict the energies of large ensembles of conûgurations, which
can be combinedwith thermodynamic descriptors to estimate the transition tem-
perature and miscibility gaps for solid solutions and high entropy alloys [167].
|e concept of entropy stabilization has recently been extended beyondmetal-

lic alloys to include multicomponent ceramics, such as high entropy oxides [168,
169]. High entropy oxides consist of an ordered anion sublattice occupied by oxy-
gen ions, with a disordered cation sublattice randomly occupied by ûve different
metal ions, such as Co, Cu,Mg, Ni, and Zn [168, 169].|e oxygen ions screen the
metal ions from each other, reducing the energy cost associated with forming a
random conûguration of themetal ions, enabling the formation of a single-phase,
entropy-stabilized ceramic.

7.5.1.2 Metallic Glasses

Metallic glasses are alloys in which the atoms do not occupy the sites of a regular
periodic lattice, but instead form a structurally disordered amorphous phase.
|ese materials are of great commercial and industrial interest due to their
unique combination of superb mechanical properties [170] and plastic-like
processability [171–173] for several potential applications [174–178].
Several different attempts have been made to understand the formation of

metallic glasses and predict the GFA of different alloy compositions. Most of
these efforts center around maximizing the packing density of the different
atoms [179], which requires elements with a range of different atomic radii
[180–184]. Other efforts have been made to use phase diagram data on liquidus
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temperatures to predict GFA [185–187]. Work is also underway to use machine
learning techniques to predict potential glass formers [188].
Much of the theoretical work described above relies on the use of experimen-

tal rather than ab initio computational data to predict new materials, due to the
difficulty of modeling amorphous structures using ûrst principles techniques.
However, Perim et al. [48] recently demonstrated that the energies of different
structural phases can be combined into a descriptor to predict the formation of
metallic glasses. If there are many different structural phases with similar for-
mation enthalpy, this will frustrate crystallization during solidiûcation and thus
promote glass formation [48]. |is frustration can be quantiûed to formulate a
spectral descriptor for GFA using the structural and energetic information avail-
able in computational materials data repositories such as AFLOW [2, 4–6]. |e
differences in the geometry between two structures are quantiûed by describing
each structure in terms of its atomic environments [189–191], while the forma-
tion enthalpy differences between the respective structures are expressed in the
form of Boltzmann factors. |e energetic and structural descriptors can then be
combinedwith appropriate normalization factors to formulate a spectral descrip-
tor for GFA as function of composition x: GFA ({x}). Comparisons with known
glass-forming compositions available in the literature can then be used to deûne
a threshold, such that if GFA({x}) exceeds this threshold, then the composition
x would be expected to be glass forming.
|e GFA({x}) descriptor has been used to perform an automated analysis of

the GFA of over 1400 binary alloy systems from the AFLOW data repository
[48]. While over half of all binary alloy systems are predicted to have a GFA
below that of the threshold, nevertheless some 17% of alloy systems display a
maximum value of GFA({x}) greater than the maximum value for the Cu–Zr
system, a well-known good glass former.|ese included several alloy systems for
which glass formation had never previously been observed or sometimes even
investigated, suggesting that there are many possible glass forming compositions
that remain to be discovered. |is success demonstrates the power of combin-
ing descriptors based on the easily calculated properties of periodic crystalline
phases with large pre-calculated databases for predicting the synthesizability of
complex disordered materials.

7.5.1.3 Modeling Off-Stoichiometry Materials

Incorporating the effects of disorder is a necessary, albeit difficult, step in mate-
rials modeling. Not only is disorder intrinsic to all materials, but it also offers
a route to enhanced and even otherwise inaccessible functionality, as demon-
strated by its ubiquity in technological applications. Prominent examples include
fuel cells [192], high-temperature superconductors [193, 194], and low thermal
conductivity thermoelectrics [195].
Speciûcally, chemical disorder can arise in the form of doping, vacancies,

and even in the occupation of lattice sites themselves (random), which cannot
inherently be modeled using periodic systems. One approach for modeling such
effects includes SQS [163]. |ese quasirandom approximates are very computa-
tionally effective but only offer a single representation of the disordered states,
i.e. that with the lowest site correlations. Instead of reducing down to a single
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representation, AFLOWtreats such systems as an ensemble of ordered supercells
[196]. Properties are resolved through ensemble averages of the representative
states, with opportunities to optimize computation (via supercell size/site error)
and tune the level of disorder explored (via parameter T). AFLOW partial occu-
pation module (AFLOW-POCC) has already resolved signiûcant stoichiometric
trends in wide-gap semiconductors and magnetic systems while offering addi-
tional insight into underlying physical mechanisms. Ultimately, the screening
criteria and property predictions generated by these bona fide thermodynamic
models and descriptors are accelerating design of new, technologically signiûcant
materials, including advanced ceramics [197] and metallic glasses [48].

7.5.2 Superalloys

Superalloys are characterized by their extraordinary mechanical properties,
particularly at temperatures near their melting point. Such traits make them
the ideal candidates for applications in the aerospace and power generation
industries. Among the more common examples, many have a face-centered
cubic structure with base elements nickel, cobalt, and iron, though nickel-based
superalloys dominate the market. A novel cobalt-based superalloy, Co3(Al,W),
was discovered in 2006 that exhibits mechanical properties better than many
nickel-based superalloys. |is inspired a thorough computational investigation
with AFLOW of alloys containing 40 different elements, yielding over 2224
relevant ternary systems [58]. |e search offered 102 systems shown to (i) be
more stable than Co3[Al0.5,W0.5], the L12-like random structure previously
characterized thermodynamically [198] and very close to the compositions
reported by experiments [199], (ii) have a relevant concentration (X3[AxB1−x])

that is in two-phase equilibrium with the host matrix, and (iii) exhibit only small
deviations from the host matrix lattice (within 5% relative mismatch).
For these 102 candidates, additional pertinent properties were extracted,

including the density and bulk modulus (as a proxy for hardness). Low density
materials are preferred to mitigate the stress on turbine components. Signiûcant
trends for the bulk modulus are elucidated when plotted with respect to compo-
nentB on a Pettifor scale: Ni-basedmaterials show a peak at or beforeNi, whereas
Co-based materials monotonically increase. Additionally, Co-based materials
are generally more resistant to compression compared with Ni-based materials.
Of the 102 candidates, 37 materials have no reported phase diagrams in

standard databases and are thus expected to be unexplored or new. Additional
screening based on the toxicity and (low) melting temperature of components
uncovered six priority candidates for experimental validation.

7.5.3 Thermoelectrics

|ermoelectric materials generate an electric voltage when subjected to a tem-
perature gradient and can also generate a temperature gradient when a voltage
is applied [200, 201]. |eir lack of moving parts and resulting scalability means
that they have potential applications in power generation for spacecraft, energy
recovery from waste heat in automotive and industrial facilities [202, 203] and
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in spot cooling for nanoelectronics using the Peltier cooling effect [202, 203].
However, most of the available thermoelectric materials have low efficiency, only
converting a few percent of the available thermal energy into electricity. |ere-
fore, a major goal of thermoelectrics research is to develop new materials that
have higher thermoelectric efficiency.
|e thermoelectric efficiency of a material is determined by the ûgure of merit

zT , which is obtained from [200, 201]

zT =
ÿS2T

ÿL + ÿe
(7.35)

where S is the Seebeck coefficient, ÿ is the electrical conductivity, ÿL is the lat-
tice thermal conductivity, and ÿe is the electronic thermal conductivity. |e lat-
tice thermal conductivity ÿL can be calculated using the methods described in
Section 7.3. Most of the electronic thermal conductivity ÿe will depend directly
on the electrical conductivity ÿ through the Wiedemann–Franz law [200]

ÿe = LÿT (7.36)

where L is the Lorenz factor, which has a value of 2.4 × 10−8 J2/(K2
⋅ C2) for free

electrons. |e Seebeck coefficient S is given by [200]

S =
8ÿ2k2

B

3eh2
m∗T

(
ÿ

3n

) 2

3

(7.37)

where n is the charge carrier concentration, e is the electronic charge, and m∗

is the density of states effective mass of the charge carriers in the material. |e
effective mass tensormij can be calculated from the curvature of electronic band

structure dispersion E(k⃗):

m−1
ij

=
1

ℏ2

d2E

dkidkj
(7.38)

where ki and kj are components of the wave vector k⃗. Larger curvature of the
band structure implies a lower effective mass, while üat narrow bands tend to
result in a large effective mass. Charge carrier mobility and thus electrical con-
ductivity tend to reduce with increasing effective mass. However, as can be seen
from Eq. (7.37), the Seebeck coefficient increases with effective mass, and ÿe also
increases with ÿ. |erefore, a compromise should be found between high effec-
tive mass to maximize S and high charge carrier mobility to give high ÿ in order
to optimize the thermoelectric efficiency of the device.
Several computational high-throughput searches have been performed for

thermoelectric materials [37–40, 115, 204–206]. Many of the efforts toward
developingmore efficient thermoelectric materials have focused on either lower-
ing the lattice thermal conductivity ÿL or ûndingmaterials inwhich the electronic
properties are highly directional, allowing for a narrow energy band distribution
while simultaneously having a low effective mass, thus increasing the power
factor ÿS2. High-throughput searches for materials with low lattice thermal con-
ductivity have focused on materials such as half-Heusler structures [39, 40, 207],
which have lower densities and thus lower thermal conductivities than the
full Heusler structures. Other promising materials include structures such as
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clathrates [208–212] and skutterudites [206, 213–215], which contain hollow

voids that can be ûlled with <rattler= atoms to reduce the lattice thermal

conductivity. Filled skutterudites in particular, such as RxCo4Sb12, are excellent

thermoelectric materials because of their combination of a high effective mass

with high carrier mobility due to the existence of a secondary conduction band

with 12 conducting charge carrier pockets [206].

Searches of large databases of inorganic materials to ûnd new thermoelectrics

include the study of 48 000 materials from the Materials Project database [204],

where the power factor was calculated using the BoltzTraP code [216] and the

thermal conductivity was estimated using the Clarke [217] and Cahill–Pohl [218]

models. Almost 600 oxides, nitrides, and sulûdes from the ICSD were investi-

gated by Garrity [115], where the lattice thermal conductivity was calculated at

the quasi-harmonic phonon level of approximation, with particular attention

being paid to degeneracies in the conduction band minimum, or materials

with strongly anisotropic conduction bands, that result in an effective low-

dimensional conductor with a corresponding increase in the power factor. |e

thermoelectric material LiZnSb was proposed by an automated search of the

calculated band structures of 1640 compounds in the ICSD containing Sb [38],

although later experimental measurements did not ûnd a high thermoelectric

efficiency for this compound [219].

Other strategies to increase the power factor include engineering the band

structure [220] through volume changes by alloying different materials to create

solid solutions, such as antiüuoriteMg2Si andMg2GewithMg2Sn or orthorhom-

bic Ca2Si and Ca2Ge with Ca2Sn [221]. Tuning the composition of alloys can

also be used to converge the valence and conduction bands, enabling high valley

degeneracy to be achieved inmaterials such as PbTe1−xSex alloys [222]. Solid solu-

tions can also produce local anisotropic structural disorder, increasing phonon

scattering and thus improving the thermoelectric efficiency [223, 224].

|e exploitation of thermodynamic phenomena such as spinodal decompo-

sition to self-assemble heterostructures with increased phonon scattering [225]

has also been proposed to enhance the efficiency of thermoelectric devices. In

this approach, materials such as PbSe and PbTe, which are miscible at high tem-

peratures, undergo phase separationwhen themixture is cooled slowly, creating a

layered heterostructure with a network of boundaries between the different com-

ponents, which scatter phonons and thus suppress the thermal conductivity.|is

concept has also been extended to other nanotechnology applications, e.g. as a

means to embed a network of electrically conducting nanowires, in the form of

topologically protected interface states, within an insulating matrix [226].

|e combination of different competing materials properties that must be

optimized to maximize the thermoelectric efficiency highlights the importance

of integrated frameworks such as AFLOW, which can automatically calculate

different types of materials properties such as thermal conductivity and elec-

tronic band structures. Having all of these electronic and thermal properties

calculated and available in an integrated, searchable, sortable data repository

such as AFLOW.org accelerates the design of new, high-efficiency thermoelectric

materials.
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7.5.4 Magnetic Materials

|e search for new magnetic systems remains a long-standing challenge despite
their ubiquity inmodern technology [227]. Magnetism demonstrates remarkable
sensitivity to a number of properties, including electronic conûguration, bond
length/angle, and magnetic ion valence, and thus its presence is rather uncom-
mon and difficult to predict. In fact, only two percent of the known inorganic
compounds [52] exhibit magnetic order of any kind. Consumer applications
place additional practical restrictions for magnets, with the current global
market effectively populated by only two dozen compounds. |ese obstacles
motivated a large-scale computational search with AFLOW for new magnets
among the Heusler structure family. Heusler structures are of particular interest
for a number of reasons: (i) several are known high-performance magnets, (ii)
the breadth of distinct compounds offers an excellent chance for discovery,
(iii) the full set of materials will likely offer other types of interesting materials
(aside from magnets), and (iv) they are metallic and thus well described by
DFT. |ere are three types of Heusler structures, i.e. the regular-Heuslers
X2YZ (Cu2MnAl-type), inverse-Heuslers (XY )XZ (Hg2CuTi-type), and the
half-Heuslers XYZ (MgCuSb-type). By decorating these prototypes with ternary
combinations of 55 elements, a total of 236 115 compounds were generated and
added to the AFLOW.org repository.
As a ûrst attempt, the analysis is limited to Heuslers containing elements of

the 3d, 4d, and 5d periods, i.e. a subset of 36 540 compounds. Of this set, 248
are determined to be thermodynamically stable, and 22 have a magnetic ground
state compatible with the unit cells considered. Among these 22 magnetic
ground-state compounds, a few prominent classes can be identiûed, including
Co2YZ and Mn2YZ. Upon further analysis of these classes, four materials
were of particular interest. In the ûrst class Co2YZ, there already exists 25
known compounds all lying on the Slater–Pauling curve (magnetic moment per
formula unit vs. number of valence electrons) [228]. |e regression predicts
Co2MnTi to have the notably high Curie transition temperature TC of 940 K – a
feature shared by only two dozen known magnets. |e second class Mn2YZ is
of interest because of their high TC and potentially large magnetocrystalline
anisotropy [229]. Two known examples from this class, Mn2VAl and Mn2VGa,
show ferrimagnetic ordering, matching two candidates from the list of 22,
Mn2PtCo and Mn2PtV. One more compound was highlighted for satisfying
a stringent thermodynamic constraint. Mn2PdPt is robustly stable by at least
30 meV, where the criterion derives from the distance of the stable phase from
the pseudo-convex hull that neglects it. |is criterion quantiûes the impact of
the structure on the minimum energy surface.
Following an attempt to synthesize these four candidates, two were success-

ful (Co2MnTi and Mn2PtPd), and the other two decomposed into binary com-
pounds. In fact, Co2MnTi shows a TC of 938 K, almost exactly as predicted by
the Slater–Pauling curve. Surprisingly, Mn2PdPt shows antiferromagnetic order-
ing and tetragonal distortion (c∕a ∼ 1.8), a result corroborated by calculation
upon further analysis. Beyond the synthesis of these two systems, this investi-
gation offers a new, accelerated pathway to materials discovery over traditional
trial-and-error approaches.
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7.6 Conclusion

Automated computational materials design frameworks have the capability to
rapidly generate materials data without the need for laborious human interven-
tion. |ey are being used to construct large repositories of programmatically
accessible materials properties, calculated in a standardized, consistent fashion
so as to facilitate the identiûcation of trends and the training of machine learning
models to predict electronic, thermal, andmechanical behavior.When combined
with physical models and intelligently formulated descriptors, the data becomes
a powerful tool to accelerate the discovery of newmaterials for applications rang-
ing from high-temperature superalloys to thermoelectrics and magnets.
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